Università degli studi dell'Insubria

MATEMATICA

schede informative

Coerentemente con gli obiettivi formativi qualificanti della classe, il corso di laurea in matematica ha come principale obiettivo formativo quello di fornire una solida preparazione a livello avanzato nei principali settori della matematica acquisendo consapevolezza e familiarità con il metodo matematico. Pur evitando una preparazione monotematica, il percorso formativo mira a condurre gli studenti ad aspetti di punta della matematica moderna e delle sue applicazioni ad altre discipline, principalmente alla fisica e all'informatica, ma anche alle scienze economiche, biologiche e sociali.

In particolare, il corso di laurea in matematica si propone :
- di fornire conoscenze avanzate in uno o piu’ degli ambiti della matematica moderna pura ed applicata, anche nel contesto di altre scienze;
- di fornire strumenti avanzati per l’analisi e la modellizzazione matematica di problemi in vari ambiti scientifici;
- di fornire competenze adeguate competenze computazionali e informatiche.

La modalità didattica è prevalentemente quella tradizionale delle lezioni ed esercitazioni frontali.
Al fine di potenziare le abilità espositive e comunicative, nonché l'autonomia e la capacità di sintesi, sono previste attività seminariali svolte dagli studenti sia in gruppo che singolarmente, sotto la diretta supervisione dei docenti. Queste attività possono concorrere alla valutazione finale se svolte all'interno di un insegnamento, ovvero possono dare luogo al riconoscimento di crediti formativi. Coerentemente con gli formativi obiettivi della classe, un punto fondamentale del percorso formativo è demandato alla preparazione per la prova finale che consiste nella redazione di una tesi scritta su un argomento di livello avanzato.
La struttura del corso di laurea e’ interamente finalizzata a permettere che lo studente consegua compiutamente gli obiettivi formativi, tenendo conto che tutti gli insegnamenti previsti, pur con le loro specificita’, fanno parte di un’area di apprendimento essenzialmente omogenea e concorrono tutti, seppure in misura differente, al raggiungimento degli obiettivi formativi proposti

Si possono tuttavia individuare due sotto-aree con ampie sovrapposizioni:

Area della formazione teorica avanzata: gli insegnamenti di quest’area forniscono competenze avanzate nella matematica pura.
Area della formazione modellistico-applicativa avanzata: gli insegnamenti di quest’area
forniscono competenze avanzate per l’analisi e la modellizzazione di problemi che hanno origine in vari ambiti scientifici e applicativi, e gli strumenti informatici e numerici per la loro soluzione

Autonomia di giudizio: 

I laureati magistrali in matematica:
- hanno un'elevata capacità di identificare gli elementi significativi per l'analisi di problemi anche in contesti non matematici;
- sanno valutare la correttezza di una dimostrazione e valutare la coerenza di un ragionamento, con una chiara identificazione di ipotesi e conseguenze;

Queste capacità vengono fornite ed accertate mediante tutte le attività previste dal corso di studio, e in particolare mediante attività di natura seminariale, e durante l'elaborazione della tesi per la prova finale.

Abilità comunicative: 

I laureati magistrali in matematica:

- sono in grado di comunicare in modo chiaro problemi, idee e soluzioni riguardanti la Matematica, sia propri sia di altri autori, a un pubblico specializzato o generico, nella propria lingua e in inglese, sia in forma scritta che orale;
- sono in grado di dialogare in modo chiaro e proficuo con esperti di altri settori, riconoscendo la possibilità di formalizzare matematicamente situazioni di interesse applicativo, industriale o finanziario.
Le capacità citate vengono acquisite ed accertate mediante tutte le attività previste dal percorso formativo, e in particolare mediante lo svolgimento di attività seminariali e la preparazione per la prova finale.

Capacità di apprendimento: 

I laureati magistrali in matematica:

a) hanno sviluppato un metodo di apprendimento che permette la prosecuzione degli studi in modo prevalentemente anche nell'ambito di un corso di dottorato in Matematica, o in altre discipline affini;
b) hanno una mentalità flessibile, e sono in grado di inserirsi prontamente negli ambienti di lavoro, adattandosi facilmente a nuove problematiche.

Le capacità elencate sono acquisite mediante il complesso delle attività formative proposte e, in particolare, durante la preparazione per la prova finale.