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Exercise 1. Prove that any Non-Archimedean field cannot satisfy the Dedekind’s axiom.

Solution. Let be K a Non-Archimedean field. So K = (K, +, -, <) is an infinite totally ordered field such that
there exists at least an infinitesimal number { € K\ { 0 }. We can suppose £ > 0 and we know that, for every
N €N\ {0}, it holds £ < & (where: 0 € K denotes the neutral element with respect to +, 1 € K denotes
the neutral element with respect to -, N =1+---+1 (N times) and & = N1 w.r.t. -).

Now let’s consider the two following countable subsets of K:

poe |

Then it’s easy to verify that Be is a set of majorant elements for A¢ in the sense that (—§ < 0 and), for every
n,m e N\ {0}, —% < —m&? (because equivalently £ < —1-).

Finally, let be x € K, x > 0, another generic element among those for which —z is a majorant element for
Ag: this means that, for every n € N\ {0}, —% < —z (in particular, z is an infinitesimal number). Then, for

every m € N\ {0}, —z — m&? is a majorant element for A¢ as well: indeed, for every n € N\ {0},

fgz(f%>+<—%> <—xfm§2.

This shows that —z can’t be the minimum of all the majorant elements for A¢ (because —z —m &2 < —x)
and that, consequently, K cannot satisfy the Dedekind’s axiom. O

nEN\{O}} and Bgi{—m§2’m€N}.

Exercise 2. Find an ultrafunction u(x) such that

7{ |Du(z)|? dz =1
r

and such that
Ve eT, u(x) ~0.

Solution. Let be A an infinite set with A 2 R and let denote £ = L = Pg,(A) in such a way that, for every
A € L, \is a finite subset of A. Note that £ is a directed upward set with respect to C (in fact, we could
write n instead of A thinking about the correspondence n = |A| = #\ € N).

Thanks to the rings basic theory on maximal ideals, and in particular to the Krull-Zorn lemma, we know
that there exists a field E = E5 2 R of Euclidean numbers: that is, a totally ordered field E = (E, +, -, <)
such that can be built a surjective homomorphism J: R — E (between ordered algebras).
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So, given a net ¢: L — R, the A-limit of ¢ is by definition

limp(A) = J(p) € E.

Therefore, in fact, the A-limit of nets (always exists and) satisfies all the “basic properties” of an “usual limit”.

Remember also that, for every Euclidean number £ € E which is finite (not infinite), there exists one
and only one real number st(§) € R such that £ ~ st(£) in the sense of infinitely closeness: this means that
& —st(§) is an infinitesimal number of E (in particular, E is in any case a Non-Archimedean field).

As a remarkable situation of this, if for every net ¢: £ — R we denote limy_,5 ¢(A) the usual Cauchy-limit
of ¢ when it exists (so, when it belongs to R, Ve > 0,3A. € L: VN € L, N D Ao = |p(N)—limyp (V)| <€),
and if limyya ¢(A) is a finite Euclidean number, then limy_,5 ¢(\) € R and

st (1;&1 sD(A)) = lim p(}).

Let’s consider now the interval € :=]0,1[ C R and its natural extension Q* in E, that means the set

Q*iJ(QL):{&iTrRap()\) ‘ cpEQ[:}CIE,

and let be T' a hyperfinite grid on : that is, Q@ C I' C Q* and there exists a family { 'y },., of finite subsets
of , so I'y C Q with |T")| < oo for every A € L, such for which

T =limTy =< 1i
a2 {J%IA““

VAeL, JJAEF)\}.

For instance, we could imagine I' = I'q = limyA (2N ).
So let call grid function on I' any function u: Q* — E such that there exists a family { uy },., of functions
uy: 2 — R, A € L, such for which

= limuy

ulr XA

in the sense that, for every « = limyyp ) € I' (where z) € ') for every A € £), it holds

=1i .
u(x) lim u(zy)

Note that, for every function f: Q — R, its natural extension f*: Q* — E on Q* given by

f(%%m) = gig\lf(m), T\ €Q,
is trivially a grid function on I'. About that, let’s observe that in fact it would be sufficient to define a grid
function u only on T', starting from { uy },., and defining then u on I' by u = limysp uy, to finally take
(u‘Q)* as a function defined on the whole set Q.

Now let’s consider the algebra V°(Q2) of ultrafunctions on I' modelled on the pair (V(€2),{ VA(2) }ycr)
where V() := C}(Q;R) and { VA(Q) } . is a directed upward family of finite-dimensional subspaces V) (£2)
of V(€2) which contains Spang (V' (2) N A), A € £, and with [J,c, VA(Q2) = V(Q): so v € V°(Q) if and only if
u is a grid function on I' such that, more precisely, there exists a family { uy },, of functions

Uy € V)\(Q), AEL,

such for which u‘r = limypp .
Finally let’s choose an ultrafunction d € V°(Q) with al|F = limya dy (dy € Vi(€2)). Then, for every
u € V°(Q) with u’r = limypp uy (un € Va(2)), the generalized integral on I' of any uy is given by

uy(x)dxr = lim ux(ay)dy(ay) € E,
# 0@ fin 2 mlo)h(on)
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and thus, when ¢ uy(z)dz € R for every X € L, the generalized integral on I' of u is given by

ﬁu(m) dx = 1\1&1 %Fu,\(x) dx = Zu(a)d(a) €k

acl’

(the last equality follows by definition of hyperfinite sum on I'). In particular, for every a € T, it holds
d(a) = §p La(z) dz where 1, = 1y, @ — { 0,1} is the usual indicator function of { a } C Q*.
Actually, we shall consider I' = I'g and { VA(2) },c., d € V°(Q) such for which this generalized integral
extends the usual Cauchy-Riemann integral; consequently, ¢ ux(z)dr = [, ux(x)dz € R for every X € L.
Moreover let’s recall the generalized derivative Du as the grid function on I' determined by

Du|. = lim Duy.
ul lim Du
Observe that, if we let |-| :== (|-])": E — E denote the natural extension on R* = E of the usual norm
|- |: R — [0,4+00[, and similarly about the second power function on R, then by definitions
Dul?|,. = lim |Duy|?
[Dul*|, = lim [Duy|
and in particular [Du|? is a grid function on T' as well.

Finally, keeping in mind the well known Lavrentiev phenomenon (developed with hyperfinite analysis),
let’s take two sequences { VA(€2) }y ¢z, { un }rcp Which satisfy the three following properties:

e for every A € L, uy and |Du,\|2 belong to V) (€2) and u) has compact support that is independent from A;
e limy_,5 uy = 0 uniformly;

o limy,p [, [Duy|(2)dz = 1.

Then the ultrafunction u € V°(Q) defined by u!r dof limyyp uy demonstrates the desired statement. In fact,
on the one hand, [Du|* € V°(£2) too and, by definitions and assumptions,

Dul?(z dx:hm?{ Du 2:):d:n:1;
# IDuP(@)do = lim § Dur (o)

on the other hand, for every x = limypp ) € I' (where ) € I'y for every A € £), u(z) = limypa up(xy) is a
finite Euclidean number (because { uy }yc, is uniformly bounded on €2) and it has

¢ = st (1 )=l —0

s (u(x)) S )\IS\IU)\@J,\) /\gr/l\u,\(.m)
(about the last equality, use that z is finite with st(z) = limy_,5 ) € QU{ 0,1 } and so, even if st(z) ¢ { 0,1},
lux(z))| < Jur(zy) — ua(st(z))| + Jua(st(z))] = O(Jzy — st(x)]) + |ur(st(x))] — 0 for A — A). O
Exercise 3. Study by means of ultrafunctions a PDE which doesn’t have solutions in any distributions space.

Solution. Let be N € N\ {0}, @ ¢ RY a bounded open set, ug € V(Q)% T € ]0,+o0[, I == [0,T], and
a: R, — R the quadratic polynomial function defined by, for every u € R,
a(u) =u? —u

and thus let’s consider the associated evolution problem

ue CHI*, Vg (Q)h)
Ofu =Dy - [a*(u)Dgu] on I*x (I NQ*)
uw(0,-) =wuo(-) on T'N Q"

It could be shown that there exists an unique global in time ultrafunction solution w such for which, on I*
8:% u?(z) de = O(1).
r
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Proposition. Let’s assume that 0 <u <1 on I*x (I'NQ*) and that, on I*

N 2 = an ul*(z) de = )
atfru(x)dx_o dﬁwa\()d o(1)

Then Dgyu =0 on I*x (I'N Q¥).

In fact, let’s consider the quartic polynomial function P: R, — R given by, for every u € R,

in such a way that P”(-) = —[a(-)+ 1] and therefore, on I*

o f{ Pu)dz = ¢ d*Plu)druds — — 7{
I I N

at*fpp(u) da = a;ﬁ(f _ i)dw _ fr ()2 () [ Doul*de

?{ a* (w)|Dgul*dx = 0
r

which is possible if and only if |Dgul|?> = 0 on I* x (I'NQ*), and this concludes. O

(d5)*P(u) a* (u)|Dgul*de = fp [a*(u) + 1] a*(u)|Dyul*da

while also

and ultimately

References

[1] V. Benci. An improved setting for generalized functions: robust ultrafunctions. Preliminary draft, 2019.



