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Exercise 1. Prove that any Non-Archimedean field cannot satisfy the Dedekind’s axiom.

Solution. Let be K a Non-Archimedean field. So K ≡ (K,+, · ,≤) is an infinite totally ordered field such that
there exists at least an infinitesimal number ξ ∈ K \ { 0 }. We can suppose ξ > 0 and we know that, for every
N ∈ N \ { 0 }, it holds ξ < 1

N (where: 0 ∈ K denotes the neutral element with respect to +, 1 ∈ K denotes
the neutral element with respect to · , N = 1 + · · ·+ 1 (N times) and 1

N = N−1 w.r.t. · ).
Now let’s consider the two following countable subsets of K:

Aξ
.
=

{
− ξ
n

∣∣∣∣ n ∈ N \ { 0 }
}

and Bξ
.
=
{
−mξ2

∣∣ m ∈ N
}
.

Then it’s easy to verify that Bξ is a set of majorant elements for Aξ in the sense that (−ξ < 0 and), for every
n,m ∈ N \ { 0 }, − ξ

n < −mξ2 (because equivalently ξ < 1
nm).

Finally, let be x ∈ K, x > 0, another generic element among those for which −x is a majorant element for
Aξ: this means that, for every n ∈ N \ { 0 }, − ξ

n < −x (in particular, x is an infinitesimal number). Then, for
every m ∈ N \ { 0 }, −x−mξ2 is a majorant element for Aξ as well: indeed, for every n ∈ N \ { 0 },

− ξ
n

=
(
− ξ

2n

)
+
(
− ξ

2n

)
< −x−mξ2.

This shows that −x can’t be the minimum of all the majorant elements for Aξ (because −x−mξ2 < −x)
and that, consequently, K cannot satisfy the Dedekind’s axiom.

Exercise 2. Find an ultrafunction u(x) such that∮
Γ
|Du(x)|2 dx = 1

and such that
∀x ∈ Γ, u(x) ∼ 0.

Solution. Let be Λ an infinite set with Λ ) R and let denote L ≡ LΛ := Pfin(Λ) in such a way that, for every
λ ∈ L, λ is a finite subset of Λ. Note that L is a directed upward set with respect to ⊆ (in fact, we could
write n instead of λ thinking about the correspondence n = |λ| ≡ #λ ∈ N).

Thanks to the rings basic theory on maximal ideals, and in particular to the Krull-Zorn lemma, we know
that there exists a field E ≡ EΛ ) R of Euclidean numbers: that is, a totally ordered field E ≡ (E,+, · ,≤)
such that can be built a surjective homomorphism J : RL → E (between ordered algebras).
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So, given a net ϕ : L → R, the Λ-limit of ϕ is by definition

lim
λ↑Λ

ϕ(λ)
.
= J(ϕ) ∈ E.

Therefore, in fact, the Λ-limit of nets (always exists and) satisfies all the “basic properties” of an “usual limit”.
Remember also that, for every Euclidean number ξ ∈ E which is finite (not infinite), there exists one

and only one real number st(ξ) ∈ R such that ξ ∼ st(ξ) in the sense of infinitely closeness: this means that
ξ − st(ξ) is an infinitesimal number of E (in particular, E is in any case a Non-Archimedean field).

As a remarkable situation of this, if for every net ϕ : L → R we denote limλ→Λ ϕ(λ) the usual Cauchy-limit
of ϕ when it exists (so, when it belongs to R, ∀ ε > 0, ∃λε ∈ L : ∀λ′ ∈ L, λ′ ⊇ λε ⇒ |ϕ(λ′)−limλ→Λ ϕ(λ)| ≤ ε),
and if limλ↑Λ ϕ(λ) is a finite Euclidean number, then limλ→Λ ϕ(λ) ∈ R and

st
(

lim
λ↑Λ

ϕ(λ)
)

= lim
λ→Λ

ϕ(λ).

Let’s consider now the interval Ω := ]0, 1[ ⊂ R and its natural extension Ω∗ in E, that means the set

Ω∗
.
= J(ΩL) =

{
lim
λ↑Λ

ϕ(λ)

∣∣∣∣ ϕ ∈ ΩL
}
⊂ E,

and let be Γ a hyperfinite grid on Ω: that is, Ω ⊂ Γ ⊂ Ω∗ and there exists a family { Γλ }λ∈L of finite subsets
of Ω, so Γλ ⊂ Ω with |Γλ| <∞ for every λ ∈ L, such for which

Γ = lim
λ↑Λ

Γλ
.
=

{
lim
λ↑Λ

xλ

∣∣∣∣ ∀λ ∈ L, xλ ∈ Γλ

}
.

For instance, we could imagine Γ ≡ ΓΩ
.
= limλ↑Λ(Ω ∩ λ).

So let call grid function on Γ any function u : Ω∗ → E such that there exists a family { uλ }λ∈L of functions
uλ : Ω→ R, λ ∈ L, such for which

u
∣∣
Γ

= lim
λ↑Λ

uλ

in the sense that, for every x = limλ↑Λ xλ ∈ Γ (where xλ ∈ Γλ for every λ ∈ L), it holds

u(x) = lim
λ↑Λ

uλ(xλ).

Note that, for every function f : Ω→ R, its natural extension f∗ : Ω∗ → E on Ω∗ given by

f∗
(

lim
λ↑Λ

xλ

)
.
= lim

λ↑Λ
f(xλ), xλ ∈ Ω,

is trivially a grid function on Γ. About that, let’s observe that in fact it would be sufficient to define a grid
function u only on Γ, starting from { uλ }λ∈L and defining then u on Γ by u .

= limλ↑Λ uλ, to finally take(
u
∣∣
Ω

)∗ as a function defined on the whole set Ω∗.
Now let’s consider the algebra V ◦(Ω) of ultrafunctions on Γ modelled on the pair (V (Ω), { Vλ(Ω) }λ∈L)

where V (Ω) := C1
c (Ω;R) and { Vλ(Ω) }λ∈L is a directed upward family of finite-dimensional subspaces Vλ(Ω)

of V (Ω) which contains SpanR(V (Ω) ∩ λ), λ ∈ L, and with
⋃
λ∈L Vλ(Ω) = V (Ω): so u ∈ V ◦(Ω) if and only if

u is a grid function on Γ such that, more precisely, there exists a family { uλ }λ∈L of functions

uλ ∈ Vλ(Ω), λ ∈ L,

such for which u
∣∣
Γ

= limλ↑Λ uλ.
Finally let’s choose an ultrafunction d ∈ V ◦(Ω) with d

∣∣
Γ

= limλ↑Λ dλ (dλ ∈ Vλ(Ω)). Then, for every
u ∈ V ◦(Ω) with u

∣∣
Γ

= limλ↑Λ uλ (uλ ∈ Vλ(Ω)), the generalized integral on Γ of any uλ is given by∮
Γ
uλ(x) dx

.
= lim

λ′↑Λ

∑
aλ′∈Γλ′

uλ(aλ′)dλ(aλ′) ∈ E,
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and thus, when
∮

Γ uλ(x) dx ∈ R for every λ ∈ L, the generalized integral on Γ of u is given by∮
Γ
u(x) dx

.
= lim

λ↑Λ

∮
Γ
uλ(x) dx ≡

∑
a∈Γ

u(a)d(a) ∈ E

(the last equality follows by definition of hyperfinite sum on Γ). In particular, for every a ∈ Γ, it holds
d(a) =

∮
Γ 1a(x) dx where 1a ≡ 1{ a } : Ω∗ → { 0, 1 } is the usual indicator function of { a } ⊂ Ω∗.

Actually, we shall consider Γ = ΓΩ and { Vλ(Ω) }λ∈L , d ∈ V ◦(Ω) such for which this generalized integral
extends the usual Cauchy-Riemann integral; consequently,

∮
Γ uλ(x) dx =

∫
Ω uλ(x) dx ∈ R for every λ ∈ L.

Moreover let’s recall the generalized derivative Du as the grid function on Γ determined by

Du
∣∣
Γ

.
= lim

λ↑Λ
Duλ .

Observe that, if we let | · | := (| · |)∗ : E → E denote the natural extension on R∗ ≡ E of the usual norm
| · | : R→ [0,+∞[, and similarly about the second power function on R, then by definitions

|Du|2
∣∣
Γ

= lim
λ↑Λ
|Duλ|2

and in particular |Du|2 is a grid function on Γ as well.
Finally, keeping in mind the well known Lavrentiev phenomenon (developed with hyperfinite analysis),

let’s take two sequences { Vλ(Ω) }λ∈L , { uλ }λ∈L which satisfy the three following properties:

• for every λ ∈ L, uλ and |Duλ|2 belong to Vλ(Ω) and uλ has compact support that is independent from λ;

• limλ→Λ uλ = 0 uniformly;

• limλ→Λ

∫
Ω |Duλ|

2(x) dx = 1.

Then the ultrafunction u ∈ V ◦(Ω) defined by u
∣∣
Γ

def
= limλ↑Λ uλ demonstrates the desired statement. In fact,

on the one hand, |Du|2 ∈ V ◦(Ω) too and, by definitions and assumptions,∮
Γ
|Du|2(x) dx = lim

λ↑Λ

∮
Γ
|Duλ|2(x) dx = 1;

on the other hand, for every x = limλ↑Λ xλ ∈ Γ (where xλ ∈ Γλ for every λ ∈ L), u(x) ≡ limλ↑Λ uλ(xλ) is a
finite Euclidean number (because { uλ }λ∈L is uniformly bounded on Ω) and it has

st
(
u(x)

)
≡ st

(
lim
λ↑Λ

uλ(xλ)
)

= lim
λ→Λ

uλ(xλ) = 0

(about the last equality, use that x is finite with st(x) = limλ→Λ xλ ∈ Ω∪{ 0, 1 } and so, even if st(x) /∈ { 0, 1 },
|uλ(xλ)| ≤ |uλ(xλ)− uλ(st(x))|+ |uλ(st(x))| = O(|xλ − st(x)|) + |uλ(st(x))| → 0 for λ→ Λ).

Exercise 3. Study by means of ultrafunctions a PDE which doesn’t have solutions in any distributions space.

Solution. Let be N ∈ N \ { 0 }, Ω ⊂ RNx a bounded open set, u0 ∈ V ◦0 (Ω)L, T ∈ ]0,+∞[, I := [0, T ]t and
a : Ru → R the quadratic polynomial function defined by, for every u ∈ R,

a(u) = u2 − u

and thus let’s consider the associated evolution problem
u ∈ C1

(
I∗, V ◦0 (Ω)L

)
∂∗t u = Dx ·

[
a∗(u)Dxu

]
on I∗× (Γ ∩ Ω∗)

u(0, · ) ≡ u0( · ) on Γ ∩ Ω∗.

It could be shown that there exists an unique global in time ultrafunction solution u such for which, on I∗,

∂∗t

∮
Γ
u2(x) dx = O(1).
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Proposition. Let’s assume that 0 < u < 1 on I∗× (Γ ∩ Ω∗) and that, on I∗,

∂∗t

∮
Γ
u2(x) dx ≡ 0 and

∮
Γ
|Dxu|2(x) dx = O(1).

Then Dxu ≡ 0 on I∗× (Γ ∩ Ω∗).

In fact, let’s consider the quartic polynomial function P : Ru → R given by, for every u ∈ R,

P (u) =
u3

6
− u4

12
− u2

2

in such a way that P ′′( · ) ≡ −
[
a( · ) + 1

]
and therefore, on I∗,

∂∗t

∮
Γ
P (u) dx =

∮
Γ
d∗uP (u)∂∗t u dx = −

∮
Γ

(d∗u)2P (u)a∗(u)|Dxu|2dx ≡
∮

Γ

[
a∗(u) + 1

]
a∗(u)|Dxu|2dx

while also

∂∗t

∮
Γ
P (u) dx ≡ ∂∗t

∮
Γ

(
u3

6
− u4

12

)
dx =

∮
Γ

(a∗)2(u)|Dxu|2dx

and ultimately ∮
Γ
a∗(u)|Dxu|2dx ≡ 0

which is possible if and only if |Dxu|2 ≡ 0 on I∗× (Γ ∩ Ω∗), and this concludes.
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