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A mathematical frame for ABC

Underlying probability space: (2, A, P).
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A mathematical frame for ABC

Underlying probability space: (2, A, P). Dimensions: dy, dy;,n € N* =N\ {0}.
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A mathematical frame for ABC

Underlying probability space: (2, A, P). Dimensions: dy, dy,n € N* =N\ {0}. Observations:
yEN(w) = yY = (v, ..., y") € V" w € Q, where Y C R has metric oy .
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Underlying probability space: (2, A, P). Dimensions: dy, dy,n € N* =N\ {0}. Observations:
yEN(w) = yY = (y,...,¥y") € V", w € Q, where Y C R has metric oy. Parameters: 9 € H,
where H C R has metric 03,. Prior: m € P(H). Model: {u7} 9w, family in 2(Y").
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A mathematical frame for ABC

Underlying probability space: (2, A, P). Dimensions: dy, dy,n € N* =N\ {0}. Observations:
yEN(w) = yY = (y,...,¥y") € V", w € Q, where Y C R has metric oy. Parameters: 9 € H,
where H C R has metric 03,. Prior: m € P(H). Model: {u7} 9w, family in 2(Y").

Given topological spaces X, Y, we denote by: B(X) the o-algebra of the Borel subsets of X;
Z(X) the class of the probability measures on B(X); Z(X,Y) the class of the measurable

functions (X, B(X)) — (Y, B(Y)).
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Underlying probability space: (2, A, P). Dimensions: dy, dy,n € N* =N\ {0}. Observations:
yEN(w) = yY = (y,...,¥y") € V", w € Q, where Y C R has metric oy. Parameters: 9 € H,

where H C R has metric 03,. Prior: m € P(H). Model: {u7} 9w, family in 2(Y").

Given topological spaces X, Y, we denote by: B(X) the o-algebra of the Borel subsets of X;
Z(X) the class of the probability measures on B(X); Z(X,Y) the class of the measurable

functions (X, B(X)) = (Y, B(Y)). We write V ¢ € 7 meaning V ¢ € # [x] (for 7-a.a. © € ).

Axiom [A0Q-a]

The model {1} }yey is generative meaning that, V19 € H, it's possible to generate how many
2= (z1,...,2") € Y with 21" ~ ) we desire.
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A mathematical frame for ABC

ABC thresholds: any ¢ € |0, gq[.
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A mathematical frame for ABC

ABC thresholds: any ¢ € ]0,e0[. ABC rejection algorithms: hereunder.

(i) Choose € € ]0, eq[.
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A mathematical frame for ABC

ABC thresholds: any ¢ € ]0,e0[. ABC rejection algorithms: hereunder.

(i) Choose & € ]0, 0. (i) Draw ¥ € H by 7 and z1" € V7.
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A mathematical frame for ABC

ABC thresholds: any ¢ € ]0,e0[. ABC rejection algorithms: hereunder.

(i) Choose & €10, 0. (i) Draw ¥ € H by 7 and z:" € V1. (iii) Keep ¥ if, and only if, z1:" € D!,
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A mathematical frame for ABC

ABC thresholds: any ¢ € ]0,e0[. ABC rejection algorithms: hereunder.
(i) Choose & €10, 0. (i) Draw ¥ € H by 7 and z:" € V1. (iii) Keep ¥ if, and only if, z1:" € D!,
ABC posteriors: T, K m Vee 10, o[, whose density is proportional to H. )[Dg]: vV B € B(H),

Jg 13D2] m(dV)

mlBl = e @)
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ABC posteriors: T, K m Vee 10, e0[, whose density is proportional to u. )[Dg]: vV B € B(H),

L LG
YL f% P HECD)
Axiom [AQ-c]
Forany Y € B(Y"), u{.\[Y] € #(H,[0,1]) (coherently w.r.t. AO-b). J
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The corresponding posterior: for Y € B(Y") and B € B(?), whenever it makes sense,

Jp #51Y]m(d0)

MBIYI= g i V(@)
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The corresponding posterior: for Y € B(Y") and B € B(?), whenever it makes sense,

Y] w(dd
x[BlY] = —fB“j[ I( 3 :
fH Uﬁ/[y] m(dv’)
Therefore, the true posterior would be
- B |{y1 n} EDSI:HEE

Marco Tarsia (Insubria - DiSAT) Mathematical Foundation of ABC 24 September 2020 4/14



A convergence result for € | 0

We denote by m := m9 " the Lebesgue measure on B(R% ™).
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A convergence result for € | 0

We denote by m := m9 " the Lebesgue measure on B(R% ™).
Axiom [Al]
Ve H, the two following conditions hold.
<< m with £§ :=duj/dm such that, Vztne yn[m], f(".)(zl”’) € B(H,R).

fJ(+) is continuous and fl. )(yl:") is not -a.s. identically zero.

1 of Al implies AO-c while 2 of Al ensures that [, £7(y*") w(d9) > 0 (eventually co).
Axiom [A2] (under A1)

There exist 6,2 € ]0,00[ and g € L1(w) with g > & [x] all such that, V¢ € H,

§< sup FR(2Y") < g(9).
Zl:neDg
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Zl:neDg

m A2 would imply 2 of AO-b employing any o € ]0, &].

= A2 implies f("_)(ylj") € L1(r) with L}(7)-norm lower or equal than ||g||; := el xery-

m Even the following generalization of A2 would work.
Axiom [A2] (under A1) There exist g € L(r) with g > 0 [«] and & € ]0, oo[ such that, for any
€ €]0,&[, there exists §. € ]0, oo[ such that, V9 eH,

5 < sup FI(ZY") < g(¥). cosknet
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e
Axiom [A3] (under A1)
Ve, Dy ) H0) € () H(E ).
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A convergence result for € | 0

Axiom [A3] (under A1)

Vo€ H, DyE-)10) C F(-) 7 (F(E). J

In particular, if D is an actual metric, then A3 trivially holds.

coskEnekE
B

Marco Tarsia (Insubria - DiSAT) Mathematical Foundation of ABC 24 September 2020 6/14



A convergence result for € | 0

Axiom [A3] (under A1)

Vo€ H, DyE-)10) C F(-) 7 (F(E). J

In particular, if D is an actual metric, then A3 trivially holds.

Proposition

Under assumptions Al, A2 and A3, the three following conditions hold.

4

coskEnekE
B

Marco Tarsia (Insubria - DiSAT) Mathematical Foundation of ABC 24 September 2020 6/14



A convergence result for € | 0

Axiom [A3] (under A1)

Vo€ H, DyE-)10) C F(-) 7 (F(E). J

In particular, if D is an actual metric, then A3 trivially holds.

Proposition
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In particular, if D is an actual metric, then A3 trivially holds.

Proposition

Under assumptions Al, A2 and A3, the three following conditions hold.
The ABC rejection algorithm and the ABC posterior are well defined for any e € 10,e0 V &[.
The true posterior 7[ - |y'i"] makes sense and takes the following expression: ¥V B € B(H),

Js f30 ) w(d0).
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A convergence result for € | 0

Axiom [A3] (under A1)

V€M, D(yHn,-)71(0) C £7() (£ (yE)). J

In particular, if D is an actual metric, then A3 trivially holds.

Proposition

Under assumptions Al, A2 and A3, the three following conditions hold.
The ABC rejection algorithm and the ABC posterior are well defined for any e € 10,e0 V &[.
The true posterior 7[ - |y'i"] makes sense and takes the following expression: ¥V B € B(H),

Js f30 ) w(d0).

T 1:n — .
Bl =7 n (i) w(aor)

The ABC posterior strongly converges to the true posterior as € | 0: V B € B(H),

71a[B] = 7[Bly"] ase 0.

4
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Optimal transport theory in ABC

Let's visualize (Y, 0y ) as a separable and complete metric space, thus also a Radon space, i.e.
any element in #()) is a Radon probability measure (outer regular on Borel subsets and inner
regular on open subsets); and let’s choose an unit cost function c: Y X Y — [0, oo] which is
lower semicontinuous (so Borel measurable) and a parameter p € [1, co[ of summability.
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We denote by #,()) the subclass of &()) whose elements have finite p-th moment.

Kantorovich's formulation. For p,v € Z,(Y), consider the subclass I'(u, ) of Z(Y x )) whose
elements v are the couplings with marginals . and v.
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We denote by #,()) the subclass of &()) whose elements have finite p-th moment.
Kantorovich's formulation. For p,v € Z,(Y), consider the subclass I'(u, ) of Z(Y x )) whose

elements v are the couplings with marginals . and v. Then the Kantorovich's formulation of the
optimal transport problem related to (), 0y), ¢ and p is

K(p,v) = inf / cly,y")dy(y,y").
YET(p,v) Jyxy
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elements v are the couplings with marginals . and v. Then the Kantorovich's formulation of the
optimal transport problem related to (), 0y), ¢ and p is

K(p,v) = inf / cly,y")dy(y,y").
YET(p,v) Jyxy

It can be shown that there exists a minimizer v* € (i, v) for such a problem which could be
determined by means of gradient descent algorithms.
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Let's visualize (Y, 0y ) as a separable and complete metric space, thus also a Radon space, i.e.
any element in #()) is a Radon probability measure (outer regular on Borel subsets and inner
regular on open subsets); and let’s choose an unit cost function c: Y X Y — [0, oo] which is
lower semicontinuous (so Borel measurable) and a parameter p € [1, co[ of summability.

We denote by #,()) the subclass of &()) whose elements have finite p-th moment.
Kantorovich's formulation. For p,v € Z,(Y), consider the subclass I'(u, ) of Z(Y x )) whose

elements v are the couplings with marginals . and v. Then the Kantorovich's formulation of the
optimal transport problem related to (), 0y), ¢ and p is

K(p,v) = inf / cly,y")dy(y,y").
YET(p,v) Jyxy

It can be shown that there exists a minimizer v* € (i, v) for such a problem which could be
determined by means of gradient descent algorithms.

Example

For ¢ = (0y)P, K coincides with the p-power of the Wasserstein distance: K = WJ}. }
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Optimal transport theory in ABC

Monge's formulation. For p,v € %,(Y), consider the subclass T(u,v) of () = #(Y,Y)
whose elements T satisfy Tup = v (push-forward or image measure of p through T).
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Monge's formulation. For p,v € %,(Y), consider the subclass T(u,v) of () = #(Y,Y)
whose elements T satisfy Tup = v (push-forward or image measure of 4 through T). Then, at
least when p and v are both atomic (not diffuse) or otherwise when p is not atomic (diffuse),
the Monge's formulation of the optimal transport problem related to (), 0y), ¢ and p is

M(p,v) iTeiTr}fw)/yC(y, T(y)) u(dy).
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the Monge's formulation of the optimal transport problem related to (), 0y), ¢ and p is

M(p,v) iTeiTr}fw)/yC(y, T(y)) u(dy).

Example

Assume dy =1 and Y = R with gy, equal to the Euclidean metric.
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whose elements T satisfy Tup = v (push-forward or image measure of 4 through T). Then, at
least when p and v are both atomic (not diffuse) or otherwise when p is not atomic (diffuse),
the Monge's formulation of the optimal transport problem related to (), 0y), ¢ and p is

M(p,v) iTeiTr}fw)/yC(y, T(y)) u(dy).

Example

Assume dy =1 and Y = R with gy, equal to the Euclidean metric. If there exists a function

¢: R — R which is convex and such that c(y,y’) = ¢(y —y’), y,y’ € R, then, for p,v € F,(R)
with p not atomic, the function T*:= Flo F,, € T(p,v) is an optimal transport map w.r.t. the
Monge's formulation (the unique if ¢ is strictly convex) and the following identity holds:

1
My, v) = /R oy — T*()) u(dy) = /O p(FTH(t) - FH (1)) dr.
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Monge's formulation. For p,v € %,(Y), consider the subclass T(u,v) of () = #(Y,Y)
whose elements T satisfy Tup = v (push-forward or image measure of 4 through T). Then, at
least when p and v are both atomic (not diffuse) or otherwise when p is not atomic (diffuse),
the Monge's formulation of the optimal transport problem related to (), 0y), ¢ and p is

M(p,v) iTeiTr}fw)/yC(y, T(y)) u(dy).

Example

Assume dy =1 and Y = R with gy, equal to the Euclidean metric. If there exists a function

¢: R — R which is convex and such that c(y,y’) = ¢(y —y’), y,y’ € R, then, for p,v € F,(R)
with p not atomic, the function T*:= Flo F,, € T(p,v) is an optimal transport map w.r.t. the
Monge's formulation (the unique if ¢ is strictly convex) and the following identity holds:

1
My, v) = /R oy — T*()) u(dy) = /O p(FTH(t) - FH (1)) dr.

Radon's metric. For any p,v € Z,(Y), or(p,v) = sup / h(y) (@ — v)(dy) defines a
heco(y,[-1,1]) Y Y
metric on ,()) whose notion of convergence corresponds with the total variation one.
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Some lower bounds for n — oo

V n € N*, we write V y1" € )" meaning to vary of y1"(w) = y2in Y for P-a.a. w € Q.
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Some lower bounds for n — oo

V n € N*, we write V y1" € )" meaning to vary of y1"(w) = y2in Y for P-a.a. w € Q.

Deviation measure of distributions: ¥ n € N*, ¥ ylne yn Ve H, Ve Y, we univocally

associate an element in &(Y), possibly in #,(Y), jtn = 10 to y¥mand py , = fLg i to Z8N,
and we select a pseudo-distance 7 on Z()), possibly on Z,(Y).
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V n € N*, we write V y1" € )" meaning to vary of y1"(w) = y2in Y for P-a.a. w € Q.

Deviation measure of distributions: V n € N¥, v yline yn Ve H, ¥V zEn e Y, we univocally
associate an element in &(Y), possibly in #,(Y), jtn = 10 to y¥mand py , = My 1n tO zin,
and we select a pseudo-distance 7 on Z(Y), possibly on Z,(Y).

Example

pn=Hn=n"t37_; S,k and py n = fg,n = n~1 3701 6,k (empirical distributions). J
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associate an element in &(Y), possibly in #,(Y), jtn = 10 to y¥mand py , = Py 710 tO zin,
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Some lower bounds for n — oo

¥ n € N*, we write V y1" € )" meaning to vary of yE"(w) =y in Y for P-a.a. w € Q.
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associate an element in &(Y), possibly in #,(Y), jtn = 10 to y¥mand py , = Py 710 tO zin,
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pn=fa=n"130_, Sy and py p = flg,n = n~1 3701 6,k (empirical distributions).
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3 of BO holds if, ¥ n € N*, ¥V y1" € ", V9 € H and ¥ 21" € 3,

. . coskEnekE
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Some lower bounds for n — oo

Axiom [B1] (under BO)
There exists unique p. € 2(Y), possibly in Z,(Y), such that the following occurs.
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Some lower bounds for n — oo

Axiom [B1] (under BO)

There exists unique p. € 2(Y), possibly in Z,(Y), such that the following occurs.
For any n € N*, w — T (un, p«) is A-measurable as a function from Q to R.
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Some lower bounds for n — oo

Axiom [B1] (under BO)

There exists unique p. € 2(Y), possibly in Z,(Y), such that the following occurs.
For any n € N*, w — T (un, p«) is A-measurable as a function from Q to R.
T (tn, pis) = 0, P-as., as n — oo.

Marco Tarsia (Insubria - DiSAT) Mathematical Foundation of ABC 24 September 2020 10/14



Some lower bounds for n — oo

Axiom [B1] (under BO)

There exists unique p. € 2(Y), possibly in Z,(Y), such that the following occurs.
For any n € N*, w — T (un, p«) is A-measurable as a function from Q to R.
T (tn, pis) = 0, P-as., as n — oo.

Marco Tarsia (Insubria - DiSAT) Mathematical Foundation of ABC 24 September 2020 10/14



Some lower bounds for n — oo

Axiom [B1] (under BO)

There exists unique p. € 2(Y), possibly in Z,(Y), such that the following occurs.
For any n € N*, w — T (un, p«) is A-measurable as a function from Q to R.
T (tn, pis) = 0, P-as., as n — oo.

Axiom [B2] (under B1)

V9 € H, there exists unique 11y € Z(Y), possibly in Z,()), such that the following occurs.
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Some lower bounds for n — oo

Axiom [B1] (under BO)

There exists unique p. € 2(Y), possibly in Z,(Y), such that the following occurs.
For any n € N*, w — T (un, p«) is A-measurable as a function from Q to R.
T (tn, pis) = 0, P-as., as n — oo.

Axiom [B2] (under B1)

V9 € H, there exists unique 11y € Z(Y), possibly in Z,()), such that the following occurs.
The function ¥ +— T (g, ptx) belongs to B(H,Ry).
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Some lower bounds for n — oo

Axiom [B1] (under BO)

There exists unique p. € 2(Y), possibly in Z,(Y), such that the following occurs.
For any n € N*, w — T (un, p«) is A-measurable as a function from Q to R.
T (tn, pis) = 0, P-as., as n — oo.

Axiom [B2] (under B1)

V9 € H, there exists unique 11y € Z(Y), possibly in Z,()), such that the following occurs.
The function ¥ — T (py, s ) belongs to B(H,R4).
¥V n € N*and V9 € H, the function z1:" s T (9,0, o) belongs to B(Vg, Ry).
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Some lower bounds for n — oo

Axiom [B1] (under BO)

There exists unique p. € 2(Y), possibly in Z,(Y), such that the following occurs.
For any n € N*, w — T (un, p«) is A-measurable as a function from Q to R.
T (tn, pis) = 0, P-as., as n — oo.

Axiom [B2] (under B1)

V9 € H, there exists unique 11y € Z(Y), possibly in Z,()), such that the following occurs.
The function ¥ — T (py, s ) belongs to B(H,R4).
¥V n € N*and V9 € H, the function z1:" s T (9,0, o) belongs to B(Vg, Ry).
There exists 7 € [0, 1] such that, VI9e€Hand Ve >0,

limsup, uf [{ 257 € V) | T(po,n o) > }] < 7.

o
—
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Some lower bounds for n — oo

Axiom [B1] (under BO)

There exists unique p. € 2(Y), possibly in Z,(Y), such that the following occurs.
For any n € N*, w — T (un, p«) is A-measurable as a function from Q to R.
T (itn, s) — 0, P-a.s., as n — oo.

Axiom [B2] (under B1)

V9 € H, there exists unique 11y € Z(Y), possibly in Z,()), such that the following occurs.
The function ¥ — T (py, s ) belongs to B(H,R4).
¥V n € N*and V9 € H, the function z1:" s T (19,0, o) belongs to B(Vj, Ry).
There exists 7 € [0, 1] such that, VI9e€Hand Ve >0,

limsup,, uj [{ 247 € Vg | T(wo,n, o) > € }] <.
There exist o € [0,7] and 1 > 0 such that, V9 € H and V & € ]0, 1],

liminfo uf [{ 227 € V) | T(pon o) > € }] > 0.

o
—
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Some lower bounds for n — oo

3 of B2 is equivalent to any version of that in which an upper bound for ¢ is imposed.

coskEnekE
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Some lower bounds for n — oo

3 of B2 is equivalent to any version of that in which an upper bound for ¢ is imposed.
Furthermore if, V9 € H and V & > 0, pu3[T (po,n, p9) > €] — 0 as n — oo (shortly put), then
any 7 € [0, 1 satisfies 3 of B2 while only o = 0 but any €1 > 0 fulfill 4 of B2.

coskEnekE
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Some lower bounds for n — oo

3 of B2 is equivalent to any version of that in which an upper bound for ¢ is imposed.
Furthermore if, V9 € H and V & > 0, pu3[T (po,n, p9) > €] — 0 as n — oo (shortly put), then
any 7 € [0, 1 satisfies 3 of B2 while only o = 0 but any €1 > 0 fulfill 4 of B2.

Axiom [B3] (under 1 and 2 of B2)
There exists ¥, € H which minimizes ¢ — T (g, px) over H: simbolically,

U € argming, T (p(. ), ps)-

coskEnekE
—

Marco Tarsia (Insubria - DiSAT) Mathematical Foundation of ABC 24 September 2020 11/14



Some lower bounds for n — oo

3 of B2 is equivalent to any version of that in which an upper bound for ¢ is imposed.
Furthermore if, V9 € H and V & > 0, pu3[T (po,n, p9) > €] — 0 as n — oo (shortly put), then
any 7 € [0, 1 satisfies 3 of B2 while only o = 0 but any €1 > 0 fulfill 4 of B2.

Axiom [B3] (under 1 and 2 of B2)
There exists ¥, € H which minimizes ¢ — T (g, px) over H: simbolically,

U € argming, T (p(. ), ps)-

We denote e, = T (9, , tx) = miny T(u(,),u*) >0and, VO €H, Ty =T (1o, ix) > €x.

coskEnekE
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Some lower bounds for n — oo

3 of B2 is equivalent to any version of that in which an upper bound for ¢ is imposed.
Furthermore if, V9 € H and V & > 0, pu3[T (po,n, p9) > €] — 0 as n — oo (shortly put), then
any 7 € [0, 1 satisfies 3 of B2 while only o = 0 but any €1 > 0 fulfill 4 of B2.

Axiom [B3] (under 1 and 2 of B2)

There exists ¥, € H which minimizes ¢ — T (g, px) over H: simbolically,

U € argming, T (p(. ), ps)-

We denote e, = T (py, , ftx) = ming T (p(. ), #+) > 0 and, VI eH To=T(ug, ) > ex.

Axiom [B4] (under B3)

There exist a neighborhood U, C H of ¥4, a connecteii neighborhood Iy C R of zero and a
strictly increasing function ¢ : I — R4 all such that, V9 € Uy,

Ty —ex < Y (on(9,94)).

coskEnekE
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Some lower bounds for n — oo

3 of B2 is equivalent to any version of that in which an upper bound for ¢ is imposed.
Furthermore if, V9 € H and V & > 0, pu3[T (po,n, p9) > €] — 0 as n — oo (shortly put), then
any 7 € [0, 1 satisfies 3 of B2 while only o = 0 but any €1 > 0 fulfill 4 of B2.

Axiom [B3] (under 1 and 2 of B2)

There exists ¥, € H which minimizes ¢ — T (g, px) over H: simbolically,

U € argming, T (p(. ), ps)-

We denote e, = T (9, , tx) = miny T(u(,),u*) >0and, VO €H, Ty =T (1o, ix) > €x.

Axiom [B4] (under B3)

There exist a neighborhood U, C H of ¥4, a connecteii neighborhood Iy C R of zero and a
strictly increasing function ¢ : I — R4 all such that, V9 € Uy,

Ty —ex < Y (on(9,94)).

We write “for any (y")," meaning to vary of (y¥"(w))n = (y¥")n, with y1"(w) = y¥" in Y7
for any n € N*, w.r.t. aw € Q.

coskEnekE
—

Marco Tarsia (Insubria - DiSAT) Mathematical Foundation of ABC 24 September 2020 11 /14



Some lower bounds for n — oo

3 of B2 is equivalent to any version of that in which an upper bound for ¢ is imposed.
Furthermore if, V9 € H and V & > 0, pu3[T (po,n, p9) > €] — 0 as n — oo (shortly put), then
any 7 € [0, 1 satisfies 3 of B2 while only o = 0 but any €1 > 0 fulfill 4 of B2.

Axiom [B3] (under 1 and 2 of B2)

There exists ¥, € H which minimizes ¢ — T (g, px) over H: simbolically,

U € argming, T (p(. ), ps)-

We denote e, = T (9, , tx) = miny T(u(,),u*) >0and, VO €H, Ty =T (1o, ix) > €x.

Axiom [B4] (under B3)

There exist a neighborhood U, C H of ¥4, a connecteii neighborhood Iy C R of zero and a
strictly increasing function ¢ : I — R4 all such that, V9 € Uy,

Ty —ex < Y (on(9,94)).

We write “for any (y")," meaning to vary of (y¥"(w))n = (y¥")n, with y1"(w) = y¥" in Y7
for any n € N*, w.r.t. a w € Q. Lastly, for € > 0, we denote by ¢~ any element of |0, ¢].
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Some lower bounds for n — oo

Proposition

Under assumptions B0, B1, 1, 2 and 3 of B2 and B3, the following occurs so far as . < o, for
€ €]0,e0 — [, (y¥")n with n= n. large enough and with probability P going to 1 as n — oo.
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Some lower bounds for n — oo

Proposition
Under assumptions B0, B1, 1, 2 and 3 of B2 and B3, the following occurs so far as . < o, for
€ €]0,e0 — [, (y¥")n with n= n. large enough and with probability P going to 1 as n — oo.

man [Ty 2ente7/3] 2 (A —7)mlen +e7/3< Ty Sev+¢/3].
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Some lower bounds for n — oo

Proposition

Under assumptions B0, B1, 1, 2 and 3 of B2 and B3, the following occurs so far as . < o, for
€ €]0,e0 — [, (y¥")n with n= n. large enough and with probability P going to 1 as n — oo.

B i [T >ente7/3] 2 (A —n)m[en+e7/3< T Sente/3].
€*+€[H\argmnnHT ) =@ —7)men <T(.y < ex+e/3].
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Some lower bounds for n — oo

Proposition

Under assumptions B0, B1, 1, 2 and 3 of B2 and B3, the following occurs so far as . < o, for
€ €]0,e0 — [, (y¥")n with n= n. large enough and with probability P going to 1 as n — oo.

B i [T >ente7/3] 2 (A —n)m[en+e7/3< T Sente/3].
E**E[’;'-L\argmmHT ) =@ —7)men <T(.y < ex+e/3].

Under assumption 4 of B2, let’s suppose that in 3 of B0 the equality holds and that
v < €1/2.
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€ €]0,e0 — [, (y¥")n with n= n. large enough and with probability P going to 1 as n — oo.
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Some lower bounds for n — oo

Proposition

Under assumptions B0, B1, 1, 2 and 3 of B2 and B3, the following occurs so far as . < o, for
€ €]0,e0 — [, (y¥")n with n= n. large enough and with probability P going to 1 as n — oo.

B 70T > eete/3] > (L-r)m[en +67/3< Ty <ex+2/3].
S**E[’;'-L\argmmHT ) =@ —7)men <T(.y < ex+e/3].

Under assumption 4 of B2, let’s suppose that in 3 of B0 the equality holds and that
€x < €1/2. Then, for any € € 10,60 — &«[ even more enough small,

Ae = (L—0)m[T(.) < ex+5¢/3]+7m[T(.) > ex +5¢/3] >0

4.
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Some lower bounds for n — oo

Proposition

Under assumptions B0, B1, 1, 2 and 3 of B2 and B3, the following occurs so far as . < o, for
€ €]0,e0 — [, (y¥")n with n= n. large enough and with probability P going to 1 as n — oo.

B 70T > eete/3] > (L-r)m[en +67/3< Ty <ex+2/3].
S**S[’;'-L\argmmHT ) =@ —7)men <T(.y < ex+e/3].

Under assumption 4 of B2, let’s suppose that in 3 of B0 the equality holds and that
€x < €1/2. Then, for any € € 10,60 — &«[ even more enough small,

Ae = (L—0)m[T(.) < ex+5¢/3]+7m[T(.) > ex +5¢/3] >0

and

N

(T = e +e7/3] >

N 7r[a*+5*/3§’7’(,)§5*+a/3].

Ae

4.
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Some lower bounds for n — oo

Proposition

Under assumptions B0, B1, 1, 2 and 3 of B2 and B3, the following occurs so far as . < o, for
€ €]0,e0 — [, (y¥")n with n= n. large enough and with probability P going to 1 as n — oo.

B 70T > eete/3] > (L-r)m[en +67/3< Ty <ex+2/3].
S**S[’;'-L\argmmHT ) =@ —7)men <T(.y < ex+e/3].

Under assumption 4 of B2, let’s suppose that in 3 of B0 the equality holds and that
€x < €1/2. Then, for any € € 10,60 — &«[ even more enough small,

Ae = (L—0)m[T(.) < ex+5¢/3]+7m[T(.) > ex +5¢/3] >0

and

T [Ty 2 e +e7/3] 2 mlex+e7/3< Ty <ex +¢/3).

Ae
Under assumption B4, for any { € Ip \ {0} and r > 0 small enough,

ot [on(-090) 2 ) 2 mSite [T0) 2 e 4+ 9(Q)]

4.
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Some lower bounds for n — oo

Proposition

Under assumptions B0, B1, 1, 2 and 3 of B2 and B3, the following occurs so far as . < o, for
€ €]0,e0 — [, (y¥")n with n= n. large enough and with probability P going to 1 as n — oo.

B 70T > eete/3] > (L-r)m[en +67/3< Ty <ex+2/3].
S**S[’;'-L\argmmHT ) =@ —7)men <T(.y < ex+e/3].

Under assumption 4 of B2, let’s suppose that in 3 of B0 the equality holds and that
€x < €1/2. Then, for any € € 10,60 — &«[ even more enough small,

Ae = (L—0)m[T(.) < ex+5¢/3]+7m[T(.) > ex +5¢/3] >0

and

T [Ty 2 e +e7/3] 2 mlex+e7/3< Ty <ex +¢/3).

Ae
Under assumption B4, for any { € Ip \ {0} and r > 0 small enough,

ot [on(-090) 2 ) 2 mSite [T0) 2 e 4+ 9(Q)]
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Some lower bounds for n — oo

Proposition

Under assumptions B0, B1, 1, 2 and 3 of B2 and B3, the following occurs so far as . < o, for
€ €]0,e0 — [, (y¥")n with n= n. large enough and with probability P going to 1 as n — oo.

B 70T > eete/3] > (L-r)m[en +67/3< Ty <ex+2/3].
S**S[’;'-L\argmmHT ) =@ —7)men <T(.y < ex+e/3].

Under assumption 4 of B2, let’s suppose that in 3 of B0 the equality holds and that
€x < €1/2. Then, for any € € 10,60 — &«[ even more enough small,

Ae = (L—0)m[T(.) < ex+5¢/3]+7m[T(.) > ex +5¢/3] >0

and

T [Ty 2 e +e7/3] 2 mlex+e7/3< Ty <ex +¢/3).

Ae
Under assumption B4, for any { € Ip \ {0} and r > 0 small enough,

ot [on(-090) 2 ) 2 mSite [T0) 2 e 4+ 9(Q)]

for which lower bounds of a and eventually c hold if also { is small enough.
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Some lower bounds for n — oo

Let's discuss how a condition consistent with A2 as the following could interact.
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Some lower bounds for n — oo

Let's discuss how a condition consistent with A2 as the following could interact.

Axiom [A2’] (under A1)

There exist 4, € 10,00[ and g € L}(r) with g > § [r] all such that, V9 € H and ¥ (z4"),
with z1" ¢ Dg, for any n € N*,

8 <liminf, £7(z¥") and limsup, £7(z%") < g(9).
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Some lower bounds for n — oo

Let's discuss how a condition consistent with A2 as the following could interact.

Axiom [A2’] (under A1)

There exist §,¢’ € ]0,00[ and g € L*(7) with g > § [«] all such that, V€M andV (z¥")n
with z1" ¢ Dg, for any n € N*,

8 <liminf, £7(z¥") and limsup, £7(z%") < g(9).

Proposition

Under assumptions B0, B1, 1 and 2 of B2, B3, Al and A2’, the following occurs so far as
ex < o A€’ and fore €]0,60 A’ — x| and P-a.a. (y1"),.
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Some lower bounds for n — oo

Let's discuss how a condition consistent with A2 as the following could interact.

Axiom [A2’] (under A1)

There exist §,¢’ € ]0,00[ and g € L*(7) with g > § [«] all such that, V€M andV (z¥")n
with z1" ¢ Dg, for any n € N*,

8 <liminf, £7(z¥") and limsup, £7(z%") < g(9).

Proposition

Under assumptions B0, B1, 1 and 2 of B2, B3, Al and A2’, the following occurs so far as
ex < o A€’ and fore €]0,60 A’ — x| and P-a.a. (y1"),.

§
For any ¢ > 0, Tr;f;g["lz,) >e 4] > mw[’ﬁ.) >en + (]
1

coskEneE
B

Marco Tarsia (Insubria - DiSAT) Mathematical Foundation of ABC 24 September 2020 13 /14



Some lower bounds for n — oo

Let's discuss how a condition consistent with A2 as the following could interact.

Axiom [A2’] (under A1)

There exist 4, € 10,00[ and g € L}(r) with g > § [r] all such that, V9 € H and ¥ (z4"),
with z1" ¢ Dg, for any n € N*,

8 <liminf, £7(z¥") and limsup, £7(z%") < g(9).

Proposition

Under assumptions B0, B1, 1 and 2 of B2, B3, Al and A2’, the following occurs so far as
ex <eg A&’ and fore €10,e0 A’ — x| and p_a a. (yhm),.

For any ¢ > 0, 7r€*+€[T( )>a*+C] —— [Ty = ex+ (]

A 7r5*+E [H\ argming, T(.y] > [H\argminH’T(,)].
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Thanks for your attention!

Ca Porq P opa-
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