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1 Education

1979 Graduation (Italian Diploma di Maturità Classica) from the “Liceo Classico Statale “A.
Volta”” in Como, Italy, with a 60/60 mark.

1985 Graduation (Italian Laurea) cum laude in Electronic Engineering from the Politecnico di
Milano, in Milan, Italy.

1991 PhD in Electrical Engineering of Information and Systems from the Politecnico di Milano, in
Milan, Italy.

2 Academic Positions

Oct. 1991-Oct. 1993 Faculty Research Assistant at the Institute for Advanced Computer Studies
of the University of Maryland at College Park, USA.

Oct. 1993 - Oct. 1998 Assistant Professor of Computer Science at the school of Engineering at
Como, Italy and the Dipartimento di Elettronica e Informazione of Politecnico di Milano in
Milano, Italy.

Nov. 1998 - Oct. 2000 Associate Professor of Computer Science at the school of Engineering at
Como, Italy and the Dipartimento di Elettronica e Informazione of Politecnico di Milano in
Milano, Italy.

Oct. 1999 - Feb. 2000 Visiting Scientist at the Department of Computer Science of the Univer-
sity of Maryland at College Park, USA.

Nov. 2000 - Apr. 2010 Professor of Computer Science at the school of Mathematical, Physical,
and Natural Sciences and the Dipartimento di Scienze Chimiche, Fisiche e Matematiche and
the Dipartimento di Scienze della Cultura, Politiche e dell’Informazione of the Università degli
Studi dell’Insubria in Como, Italy.

May 2010 - present Professor of Computer Science at the school of Mathematical, Physical, and
Natural Sciences and the Dipartimento di Scienze Biomediche, Informatiche e della Comuni-
cazione of the Università degli Studi dell’Insubria in Varese, Italy.

3 Teaching

3.1 Teaching Assistant

Sandro Morasca was a teaching assistant for the following courses

• “Macchine per l’elaborazione dell’informazione” (“Machines for Information Processing”), held
by prof. Renato Stefanelli at the Politecnico di Milano (1986/87)
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• “Programmazione dei calcolatori elettronici” (“Computer Programming”), held by prof. Pier-
luigi Della Vigna at the Politecnico di Milano (1987/88, 1988/89, and 1989/90)

• “Introduzione agli algoritmi ed alla programmazione” (“Introduction to Algorithms and Pro-
gramming”), held by prof. Pierluigi Della Vigna at the “Scuola a Fini Speciali del Politecnico
di Milano Diretta in Informatica (Gestionale)” of the Politecnico di Milano at Como (1987/88,
1988/89, and 1989/90)

• “Ingegneria del Software” (“Software Engineering”), held by prof. Carlo Ghezzi at the Po-
litecnico di Milano (1989/90)

• “Elementi di Informatica” (“Elements of Computer Science”), held by prof. Nello Scarabottolo
at the Politecnico di Milano at Como (1990/91).

3.2 Assistant, Associate, and Full Professor

Sandro Morasca cooperated in the teaching of the following courses

• “Fondamenti di Informatica” (“Fundamentals of Computer Science”) held by prof. Pierluigi
Della Vigna at the Politecnico di Milano at Como (1993/94, 1994/95, 1995/96)

• “Fondamenti di Informatica 2” (“Fundamentals of Computer Science 2”) held by prof. Giuseppe
Pozzi at the Politecnico di Milano at Como (1997/98).

Sandro Morasca held the following courses

• “Fondamenti di Informatica” (“Fundamentals of Computer Science”) at the Politecnico di
Milano at Como (1996/97 - 2000/01)

• “Informatica A” (“Computer Science”) at the Politecnico di Milano at Como (2000/01)

• “Cultura Tecnologica del Progetto” (“Technological Culture of Design”) at the Politecnico di
Milano at Como (2000/01)

• “Laboratorio di Programmazione I” (“Laboratory of Computer Programming”) at the Uni-
versità degli Studi dell’Insubria at Como (2000/01)

• “Programmazione e Laboratorio di Programmazione” (“Computer Programming and Labora-
tory”) at the Università degli Studi dell’Insubria at Como (2001/02)

• “Progettazione di Software” (“Software Design”) at the Università degli Studi dell’Insubria at
Como (2001/02)

• “Progettazione del Software I con Laboratorio” (“Software Design I and Laboratory”) at the
Università degli Studi dell’Insubria at Como (2002/03 - 2010/2011)

• “Progettazione del Software II con Laboratorio” (“Software Design II and Laboratory”) at the
Università degli Studi dell’Insubria at Como (2002/03 - 2010/2011)

• “Ingegneria del Software I” (“Software Engineering I”) at the Università degli Studi dell’Insubria
at Como (2002/03 - 2009/2010)

• “Ingegneria del Software II” (“Software Engineering II”) at the Università degli Studi dell’Insubria
at Como (2002/03 - 2006/07 and 2009/10)

• “Computer Science” at the Libera Università Carlo Cattaneo in Castellanza (2002/03 - 2004/05)

• “Software Testing” at the Free University of Bozen, in Bozen, Italy (2008/09 - 2009/10)

• “Valutazione della Qualità del Software” (“Software Quality Evaluation”) at the Università
degli Studi dell’Insubria at Varese (2010/11)
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• “Software Engineering Project” at the Free University of Bozen, in Bozen, Italy (2009/10)

• “Software Reliability and Testing” at the Free University of Bozen, in Bozen, Italy (2010/11 -
present)

• “Progettazione del Software” (“Software Design”) at the Università degli Studi dell’Insubria
at Varese (2011/12 - present)

• “Architetture Orientate ai Servizi” (“Service Oriented Architectures”) at the Università degli
Studi dell’Insubria at Varese (2011/12)

Sandro Morasca is a co-author of book “Ingegneria del software - Progettazione, sviluppo e
verifica” (“Software Engineering - Design, Development, and Verification,” in Italian), published by
Mondadori [32].

Sandro Morasca is a co-author of book “Fondamenti di Informatica - Dal problema al pro-
gramma” (“Fundamentals of Computer Science - From the Problem to the Program,” in Italian),
published by ETAS libri [33].

He taught at continuing education courses at the Dipartimento di Elettronica of the Politecnico
di Milano.

Sandro Morasca has held courses at important Italian companies, such as ENIDATA (Milan),
Alenia (Rome), SIG (Palermo), SSGRR (L’Aquila), Telettra (Milan), Engineering (Rome), Elsag
Bailey (Genua), Systech (Milan), ASL (Como) and international schools and research institutions,
such as Università di Catania, Italy, University of Buenos Aires, Argentina, University of San Luis
Potos̀ı, Mexico, the Scuola Universitaria Professionale della Svizzera Italiana (SUPSI) in Manno,
Switzerland, the Universidad de Castilla-La Mancha, the Norwegian University for Science and
Technology in Trondheim, the University of Oslo, the Catholic University of Leuven, the Technische
Universität München, and the Universidad Politécnica de Madrid.

4 Research

4.1 Empirical Studies in Software Engineering

An overview and an analysis of the state of the art in Software Engineering measurement are in [34].

4.1.1 Case Studies Based on Existing Measures

This activity began with Dr. Morasca’s Laurea dissertation [118], which contained a critical evalua-
tion and an empirical validation of counting strategies on Pascal programs [38]. In the framework of
the PROTAGORA project, an empirical study was carried out at the Italian Ministry of Treasury to
identify factors related to software productivity from a functional (i.e., in terms of Function Points)
and an internal (i.e., in terms of code size measures) viewpoints [61]. By using the GQM paradigm,
a few factors have been identified so as to help software managers make informed decisions. The
relationship between IFPUG Function Points and COSMIC Function Points is investigated in [25].
The main result of this study is that, by using linear or piecewise linear models, it is possible to
convert one kind of Function Points into the other kind with reasonable accuracy. An additional
study [109] addresses the estimation of productivity defined in terms of IFPUG Function Points. The
data analysis shows that estimation based on the closest analogues provides better results for most
models, but very bad estimates in a few cases. To mitigate this behavior, the correction of regression
toward the mean proved effective. A further study [27] shows that Basic Functional Components
can be used to build models of effort that are equivalent, in terms of accuracy, to those based on
Function Points. Also, simplified Function Points measures can be used as software development
effort predictors in models that also use other requirements measures. So, the definition and mea-
surement processes of Function Points can be dramatically simplified by taking into account a subset
of the Base Functional Components used in the original definition of the measure, thus allowing for
substantial savings in measurement effort, without sacrificing the accuracy of software development
effort estimates.
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Both IFPUG Function Points and COSMIC Function Points were applied to a number of situa-
tions that occur quite often in real-time and embedded [113, 31]. The results seem to indicate that,
overall, COSMIC Function Points are better suited than traditional Function Points for measuring
characteristic features of real-time and embedded systems. The results also provide practitioners
with useful indications about the pros and cons of functional size measurement methods when con-
fronted with specific features of real-time and embedded software.

Functional Size Measurement methods are widely used but have two major shortcomings: they
require a complete and detailed knowledge of user requirements, and they involve relatively expensive
and lengthy processes. UML is routinely used in the software industry to effectively describe software
requirements in an incremental way, so UML models grow in detail and completeness through the
requirements analysis phase. In this context, we have defined the characteristics of increasingly more
refined UML requirements models that support increasingly more sophisticated hence presumably
more accurate size estimation processes [111, 30]. Specifically, we consider the COSMIC method
and three alternative processes (two of which are proposed in this line of research) to estimate COS-
MIC size measures that can be applied to UML diagrams at progressive stages of the requirements
definition phase. Then, we checked the accuracy of the estimates by comparing the results obtained
on a set of projects to the functional size values obtained with the standard COSMIC method. The
analysis shows that it is possible to write increasingly more detailed and complete UML models of
user requirements that provide the data required by COSMIC size estimation methods, which in turn
yield increasingly more accurate size measure estimates of the modeled software. Initial estimates
are based on simple models and are obtained quickly and with little effort. The estimates increase
their accuracy as models grow in completeness and detail, i.e., as the requirements definition phase
progresses.

We investigated whether IFPUG Function Point Analysis and the COSMIC method take directly
into consideration the amount of data processing involved in a functional process and the extent to
which the amount of data processing has an impact on the effort required for software development
[117]. To this end, we considered a few applications that provide similar functionality, but require
different amounts of data processing: these applications are then measured both via functional size
measurement methods and via traditional size measures (such as LOC). A comparison of the obtained
measures shows that differences among the applications are best captured by differences in LOC. It
is likely that the actual size of an application that requires substantial amounts of data processing
is not fully represented by functional size measures. Thus, not taking into account data processing
dramatically limits the expressiveness of the size measures. Practitioner that use size measures
for effort estimation should complement functional size measures with measures that quantify data
processing, to get precise effort estimates.

An empirical investigation on the building of fault-proneness models for software applications
based on static code measures is in [62, 20]. The models are built based on real-world data by
means of Logistic Regression and cross-validation. Two empirical studies were carried out at the
Digital Engineering Italia center in the framework of ESSI project CEMP. The final goal was to
study the costs and benefits related to the introduction of a measurement program in an industrial
context. To this end, a project under development [13] and a project under maintenance [9] were
studied. The study resulted in a number of lessons learned that are largely reusable by other indus-
trial organizations willing to introduce a GQM-based measurement program in their development
environments.

The influencing factors of the reusability of a class in an object-oriented system were studied
in [29]. Specifically, 29 measures for class size, coupling, and cohesion were used in a correlational
study that involved 1710 classes taken from real-life systems. The main results show that the size
and coupling attributes of a class have positive impacts on its reuse-proneness via inheritance and
instantiation. The cohesion of a class has a negative impact on its inheritance reuse-proneness and
a positive impact on its instantiation reuse-proneness.

References [9, 13, 20, 25, 29, 27, 30, 31, 38, 61, 62, 109, 111, 113, 117, 118]
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4.1.2 Definition of Measures for Software Code and Early Artifacts in the Life Cycle

New software measures have been defined for concurrent programming. More specifically, a measure
has been defined for concurrent languages that allows the evaluation of control flow complexity. This
measure, based on Petri nets, is able to capture both sequential and concurrent characteristics of a
program [45]. This work was later revised and extended in [53, 60], where measures are defined for
a number of qualities of specifications written by means of Petri Nets.

New measures have been defined and experimentally validated for the evaluation of software high
level design. These measures address several characteristics of high level design, such as cohesion and
coupling. The measures, initially defined in [50], have been further refined, extended, theoretically
validated according to the axioms in [6] and experimentally validated on industrial projects written
in Ada at the Goddard Space Flight Center of NASA [14]. Measurement is further extended to
the specification phase in [56], which contains the definition of measures for formal specifications
written in TRIO+ and their validation on an industrial case study to predict the effort needed to
develop a specification and the number of changes a specification undergoes. The study has provided
predictive models of fairly high accuracy.

A model for assessing the effectiveness of fault-detection processes was introduced based on
reliability modeling techniques. The model is able to evaluate both fault-detection effectiveness and
the number of faults in artifacts [8].

Studies carried out in industrial and academic settings do not appear to completely support
the common belief that hierarchical structuring of UML models increases their understandability
[81, 22].

An application of simplified Function Point Analysis to UML models of software has been pro-
posed [106] via the establishment of a precise mapping between UML elements and the so-called
Basic Functional Components, upon which Function Point Analysis measurement is based. It is
possible to decrease the cost of modeling, and consequently the cost of measurement and estimation.
The relatively low cost of the estimation models also allows developers to build different alternative
models, to perform what-if analyses and choose the most economically sensible option.

While there is a vast literature about static, structural software measures, little is known about
dynamic measures for a number of software quality attributes, i.e., measures that quantify software
attributes such as size, complexity, and coupling based on actual executions of software code, instead
of a static analysis. An initial study [108], based on data obtained on a few Open Source Software
projects, shows that dynamic software measures may be as useful as or more useful than static,
structural measures in building models for software fault-proneness.

References [8, 6, 14, 22, 45, 50, 53, 56, 60, 81, 106, 108]

4.1.3 Theoretical Validation of Software Measures

The research addressed the theoretical characterization of internal measures for a number of internal
quality attributes (such as size, complexity, cohesion, and coupling) of software artifacts [6]. Each
of these attributes was characterized via a set of axioms that a measure should satisfy to be deemed
suitable for quantifying the attribute it purports to measure. This approach makes it easier to
identify the similarities and differences among internal quality attributes, which all too often are
classified as either contributing to size or to complexity. This characterization can be applied to
several kinds of software artifacts, namely, specifications, designs, code, and test cases.

An extension of the approach was proposed to be used with interval, ordinal, and nominal mea-
sures, in addition to ratio measures for which it was originally proposed [55]. This characterization
is one of the fundamental steps in the approach for the definition of software measures proposed in
[19].

Further studies [85] have shown that the axiom sets that were originally proposed can be reduced
and some of the initial axioms are implied by the reduced axiom sets. This has shown that there
is a close relationship between the software size attribute and the concept of “measure” in Measure
Theory in Mathematics. Furthermore, the reduced axiom sets have made it possible to highlight the
relationships among internal software attributes.
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The axiomatic approach has also been used and extended to provide a theoretical validation for
the dynamic measures defined in [108].

A careful critical analysis addressed the way in which Measurement Theory has been used in
Software Engineering and the way in which it should be used, according to some authors. This anal-
ysis showed that Measurement Theory has sometimes been used incorrectly and that Measurement
Theory is a precious tool which, however, should be used in a nondogmatic way and always with
common sense [7, 10, 11, 12].

An extension to Measurement Theory has been proposed in [65], to take into account all those
cases in which a total ordering among the entities cannot be obtained. This has led to the defini-
tion of Weak Measurement Theory, where all basic concepts of Measurement Theory are extended,
specifically those of nominal, ordinal, interval, and ratio scale. New measurement levels have been
introduced in [72], where it was shown that, in some cases, it is meaningful to compute the average
value of an ordinal measure or even of a measure defined on a set of entities that are not even totally
ordered with respect to the attribute of interest.

The rigorous modeling of external attributes according to Measurement Theory has been pro-
posed and it has been shown that external attributes should be modeled via a probabilistic approach
that leads to estimation models [91]. The advantages of estimation models over weighted sums, and
the intrinsic disadvantages of weighted sums have been discussed in [92].

The ISO9126 external software attributes have been investigated in [83]. The underlying idea
was to check whether it is true that different external software attributes may be conflicting, i.e.,
that increasing one external quality may decrease some other external quality. The study involved
several software practitioners and found that, with the exception of Portability, external software
qualities are actually not believed to be conflicting.

A new measure definition process has been defined in [49, 19], based on previous applied expe-
riences. This process is based on a set of explicit goals for which measurement activities are carried
out and a deep knowledge of the software process under study. This will allow for the definition of
measures that are significant and useful with respect to their application environment.

An analysis of fundamental issues and aspects in software measurement can be found in [37].
References [6, 7, 10, 11, 12, 19, 49, 55, 65, 72, 83, 85, 91, 92, 37, 108]

4.1.4 Web-related Measurement

An empirical study was carried out with students to evaluate the accuracy of the estimates of the
effort needed to complete the design of a Web application [64].

The design phase of a Web application may require a significant part of the total development
effort and can be subdivided in several sub-phases. The empirical study showed that there is a
tendency to underestimate the effort needed for the single phases. However, effort estimates made
by the subjects can be used as a part of an effort prediction model. In addition, the empirical study
showed that there is a correlation between design qualities (such as size and complexity) and actual
effort [68, 36]. The study was replicated with Computer Engineering and Communication Sciences
students, to evaluate the impact of the students’ backgrounds on the effort needed to complete the
activities related to designing Web software [21]. This has also led to identifying some aspects that
are common across the subjects’ background.

An initial framework has been defined [114] for the measurement of a number of attributes of
Web services along the lines theoretically defined in [91].

References [21, 36, 64, 68, 114]

4.1.5 Quantitative Evaluation of Free/Libre Open Source Software

Quantitative quality evaluation is a central aspect in the engineering and the widespread adoption
of Free/Libre Open Source Software (FLOSS), like for any other product.

OpenBQR (Open Business Quality Rating) was initially proposed as a model for the evaluation of
Open Source Software [80]. OpenBQR draws some elements from previously existing Open Source
Software evaluation models, with the aim of providing a simpler and more complete evaluation
method that can be practically used.
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The evaluation of the trustworthiness of FLOSS products has been studied in the context of the
QualiPSo project, in which Dr. Morasca was the leader of the activity devoted to the evaluation of
FLOSS quality. The underlying idea is that FLOSS, like any other product, needs to be trustworthy
to be adopted by end users and developers, who need to make informed decisions on the FLOSS
products and components that best suit their needs. In the QualiPSo project, we used an organized,
step-by-step approach to explore some of the most important issues related to FLOSS trustwor-
thiness and provide viable solutions that can be used by FLOSS stakeholders–that is, end users
and developers. Our approach is deeply rooted in knowledge that we elicited from many FLOSS
stakeholders and through the analysis of several FLOSS projects.

These are the main results of this activity for end users and developers:

MOSST (Model of Open Source Software Trustworthiness): A customizable quality model for the
trustworthiness of FLOSS products [95, 24, 104]

OP2A (Open Source Product Portal Assessment): A model for evaluating the quality of web portals
that store FLOSS products [90, 103].

OSS-TMM (Open Source Software Testing Maturity Model): A maturity model specifically tar-
geted to FLOSS [86, 26].

T-DOC (Test-DOCumentation): A framework that supports a team of FLOSS developers in cre-
ating test documentation that will enhance FLOSS trustworthiness [96].

Tools An integrated set of tools to collect data on FLOSS products and processes, and report
results useful to their users.

Evaluations Additional evaluations of FLOSS products and of techniques and methodologies used
during FLOSS development.

To this end, a number of tasks have been performed.

Identification of goals and trustworthiness factors. Different stakeholders may have different
goals and factors in mind when choosing FLOSS products or components. We interviewed a
number of diverse FLOSS stakeholders and we asked them to rank the factors that contribute
to FLOSS trustworthiness. The result is an aggregate ranking of these factors that shows what
kind of information FLOSS stakeholders would really like to have and the relative importance
of the factors. This aggregate ranking was obtained via solid statistical techniques. We also
profiled the stakeholders, so we can identify the needs of different kinds of stakeholders and
find out if their needs actually differ [24, 84, 94].

Evaluation of the quality of portals and repositories. We investigated if portals and repos-
itories hosting FLOSS products and components provide FLOSS stakeholders with enough
information to make an informed decision on whether to choose some FLOSS products and
components. We carefully examined the repositories and websites hosting a number of well-
known FLOSS projects to find out what kind of information is actually available and match
it against the ranking of factors that we found by interviewing FLOSS stakeholders. As a
result, we can provide recommendations to FLOSS developers on what they need to add to
FLOSS repositories and websites to 1) help FLOSS stakeholders make informed decisions, and
2) better promote their FLOSS product. We introduced OP2A (Open Source Product Portal
Assessment) as a model for evaluating the quality of web portals that store FLOSS products,
which provides guidelines for FLOSS developers to improve their own portals and repositories
[90]. We also investigated the quality of the code in FLOSS repositories and the speed with
which software problems are fixed by communities [99].

Identification of relevant measures. We used a goal-oriented method (the Goal/Question/Metric
approach) to define candidate measures based on our problem, instead of trying to make sense
out of a large number of measures, which may be costly to collect or even misleading if used.
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So, there is a motivation behind each measure and the values collected with each measure can
be interpreted in the context of our measurement goal, that is, FLOSS trustworthiness evalu-
ation. This makes our approach even more “open,” because everyone can see which measures
have been used to quantify which factors and why [89, 95].

Definition of FLOSS verification and validation techniques. Software quality in general and
trustworthiness in particular are greatly influenced by verification and validation. Techniques
and methodologies are available for software products built in a “conventional” way, but it
is unclear if they still apply to FLOSS production as well or they need to be modified. We
thoroughly studied the various techniques available for “conventional” software to see how they
can be adapted to FLOSS. We have found out that there is a lot of room for improvement
and that FLOSS verification and validation are neither mature enough nor well-documented.
So, we developed: 1) OSS-TMM (Open Source Software Testing Maturity Model) [86], a ma-
turity model for FLOSS testing, to show the progression level of a FLOSS testing process; 2)
T-DOC (Test-DOCumentation) [96], a Javadoc-like notation that helps testers record infor-
mation about testing.

Automation of the use of our approach. We developed new tools and integrated and extended
existing data collection, measurement, and reporting tools to capture and report the informa-
tion that would be useful according to the FLOSS stakeholders we interviewed. The user
simply needs to specify the necessary information (name, version, . . . ) about the project that
needs to be analyzed and receives the analysis results via a unified interface, provided by
Spago4Q.

Estimation of FLOSS trustworthiness. Before QualiPSo, there were no trustworthiness models
available for FLOSS, but only quality models typically based on weighted sums of measures.
However, FLOSS users may be left on their own when establishing sensible weights that best
fit their own needs, because real evidence is hardly ever available about the actual usefulness
and impact of the single measures on the overall quality. In addition, quality models may
include a large number of measures. One may need to measure all of them, even though their
contribution to the assessment may be quite low, while the cost of measuring them may be
quite high.

We have defined MOSST (Model of Open Source Software Trustworthiness), a customizable
estimation model for the trustworthiness of FLOSS products [95]. Based on the values of
measures that can be collected automatically, MOSST provides an estimation of the probability
that a FLOSS product is rated as trustworthy, that is, the percentage of stakeholders that
would rate the product as trustworthy. So, for developers of a FLOSS product, MOSST provide
an assessment of how well the product will be received; for users, MOSST will estimate how
other people may estimate the product’s trustworthiness.

MOSST has been built by applying solid statistical techniques to data coming from the field.
We collected trustworthiness data by surveying a diverse set of FLOSS stakeholders by means of
a questionnaire on how they would evaluate several Java- and C/C++-based FLOSS projects.
We surveyed hundreds of FLOSS stakeholders and have so far collected thousands of evalu-
ations of FLOSS products. We have automatically collected data about those projects and
we have found that correlations exist between these data and the trustworthiness as reported
by the surveyed stakeholders. The correlation analysis provides FLOSS stakeholders with an
idea of the importance of each factor, of the weight that should be given to each factor, and of
the measures that contribute only little to the estimation. These measures may be dropped,
thus reducing the cost of data collection and making the interpretation and use of the models
simpler.

MOSST can be used by stakeholders for other qualities too, like, for instance, perceived Reli-
ability, Usability, Portability, Interoperability, Security, Documentation Quality, . . . , because,
when we surveyed FLOSS stakeholders, we also asked them about all of these qualities for
the projects we chose. So, even for those qualities, MOSST can provide an estimation of the
probability that FLOSS stakeholders positively or negatively evaluate a project.

8



Thanks to the profiling of the respondents in our surveys, specific models can be customized
for specific classes of stakeholders. Also, the models allow FLOSS stakeholders to identify
ranges (“good,” “fair,” and “poor”) for the various qualities. FLOSS stakeholders can check
how well a specific product fares in each of those qualities and make a decision that is based
on evidence with the support of our tools.

In some cases, even the application of simple coding rules can be used as a predictor for the
trustworthiness and quality of FLOSS products.

During the development of one of the tools, we also introduced SCRUM in a modified way and
we assessed its advantages and disadvantages when compared to the development approach we had
previously used [97].

As a result of the QualiPSo project, a network of Competence Centers will be created. We
discussed the issues and advantages of the Italian Competence Center in [98].

A preliminary investigation has led to insights into the strategies for FLOSS marketing and
communication, by interviewing FLOSS professionals [107].

References [24, 80, 84, 86, 89, 90, 95, 94, 95, 96, 97, 98, 99, 101, 103, 24, 104, 107]

4.1.6 Innovative Data Analysis Techniques

In [18, 54], two data analysis techniques—Rough Sets and Logistic Regression—are compared, from
both the theoretical and the experimental points of view. A hybrid approach is introduced that
combines the strengths of the two data analysis techniques and reduces Type I and Type II errors.
The approach was validated on data from the DATATRIEVE project at Digital Engineering Italia.

A new approach to deal with continuous attributes in decision trees is proposed in [59, 63], to
extend current decision trees, which may be used with essentially discrete attributes, so they require
that continuous data be discretized first, which implies loss of information and prediction power of
the measures. In addition, the discretization process is largely arbitrary. The proposed method can
solve these problems in a way that is perfectly consistent with discrete decision trees. An application
showed that the method may be more accurate that the discrete decision trees in predicting software
module fault-proneness.

An axiomatic approach was introduced for the definition of concentration indicators for nominal
data distributions. This approach allows the definition of concentration indicators that can be
selected based on specific application needs. Quite surprisingly, these concentration indicators can
be built by using Riemann’s Z-transforms. It was also shown that it is not true that is is not
meaningful to take the average of a set of ordinal data. A theorem shows the necessary and sufficient
condition needed to make the averaging operation meaningful [72].

Least Median of Squares Linear Regression (LMS), a specific kind of Robust Regression, was used
[21] on data sets collected in empirical studies. Using LMS allows researchers to avoid assumptions
on the data at hand that may not hold, like the assumptions that are used in Ordinary Least Squares
Linear Regression (OLS). Later, a novel statistical significance test was introduced for univariate
models built with LMS [87]. This test has been used [100, 25] to check the existence of a statistically
significant relationship between Function Points and COSMIC Full Function Points on a real-life
data. Least Quantile of Squares Linear Regression (LQS), an extension of LMS, was investigated,
used for effort estimation, and compared to LMS and OLS [105]. It seems that LQS may be a valid
alternative to LMS or OLS when LMS and OLS cannot be used.

Paper [110] introduces the concept of data analysis anti-patterns, i.e., data analysis procedures
that may lead to invalid results that may mislead decision makers. Two examples of anti-patterns
are presented and discussed.

The classification of modules as faulty or non-faulty usually involves setting a fault-proneness
threshold: software modules whose estimated fault-proneness is above that threshold are classified
as estimated faulty and the others as estimated non-faulty. The selection of the threshold value is to
some extent subjective and arbitrary, and different threshold values may lead to very different results
in terms of classification accuracy. We proposed a technique, based on a property of Binary Logistic
Regression fault-proneness estimation models, that does not require that a threshold be fixed [115].
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Thus, we first demonstrate a property according to which the number of actually faulty software
modules in the training set used to build a model is equal to the number of modules estimated faulty
in that set, i.e., estimation of the number of faulty modules is perfect on the training set. Then,
we use the model on a test set, and estimate the number of faulty modules. We also estimate the
number of faulty modules in the test set by using a more conventional approach with five different
fault-proneness thresholds, and we finally compare the estimates with the estimates obtained via
our approach. We carried out the empirical validation on a data set from NASA hosted on the
PROMISE repository, by using a technique similar to the one used in K-fold cross validation. In
the empirical validation we carried out, the approach we propose is able to estimate the number
of faulty modules in the test sets better than the threshold-based ones, in a statistically significant
way.

References [18, 54, 59, 63, 72, 87, 100, 25, 105, 110, 115]

4.1.7 Software Effort Estimation

We carried out an empirical study on the estimation of software development effort broken down
by phase, so that it can be used along the software development lifecycle [116]. The research has
two goals. At any given point in the software development lifecycle, we estimate the effort needed
for the next phase. Also, we estimate the effort for the remaining part of the software development
process. Our empirical study is based on historical data from the ISBSG database. The results show
a set of statistically significant correlations between: (1) the effort spent in one phase and the effort
spent in the following one; (2) the cumulative effort spent up to a phase and the effort spent in the
next phase; (3) the effort spent in a phase and the remaining effort; (4) the cumulative effort up to
the current phase and the remaining effort. However, the results also show that these estimation
models come with different degrees of goodness-of-fit. Finally, including further information, such
as the functional size, does not significantly improve estimation quality.

References [116]

4.1.8 Software Engineering Education and Empirical Methods

A number of experiences on using students in software courses as subjects in empirical studies
have been summarized in [35, 69]. The scientific literature usually only addresses research-related
issues, such as the external validity of the results obtained via experiments that use students as
subjects. It is therefore necessary that, in addition to the researcher’s viewpoint, a number of
other viewpoints be taken into account, namely: the student’s, the instructor’s, and the software
industry’s. Each of these viewpoints should obtain benefits when empirical students are carried out
during software classes. A few aspects of the relationships between industry and teaching are further
investigated in [75, 76, 77]. Teaching students specific empirical software engineering topics has been
investigated in [74, 78]. The sometimes conflicting goals and benefits of the different viewpoints and
the stakeholders’ various relationships make it necessary to carefully plan the execution of empirical
studies with students during software engineering courses. To this end, a checklist for integrating
student empirical studies with research and teaching goals has been defined in [23].

Empirical methods were also used in [112] to investigate how participants experience game proto-
typing activities and their use in the context of a software course. Statistical analysis indicates that
participants’ satisfaction and activity’s usefulness are the most influential factors for participants’
intention to attend similar activities in the future. Qualitative analysis suggests improvements on
how to prepare the participants, introduce the software used in the courses, and enrich the variety
of the materials used.

References [23, 35, 69, 74, 75, 76, 77, 78, 112]

4.2 Specification of Concurrent and Real-time Systems

This area was the major theme of the research activity carried out during the doctorate [119]. An
extended model of Petri nets, Environment/Relationship nets (ER nets) was formally defined. This
high-level Petri net model unifies high-level Petri nets (where only functional features are considered
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and time is not modeled) and timed Petri nets (where the functional behavior is not taken into
account, and only time is considered). Functional and timing aspects are modeled in a homogeneous
way, so ER nets allow modelers to represent the interaction of functional and timing aspects of
concurrent and real-time systems in a natural way [2, 39, 40], unlike previous Petri nets-based
formalisms. The way time has been introduced in ER nets can also be used to introduce timing
aspects in all other high-level Petri nets, as shown in [3]. MTER nets, an extension of ER nets,
provide a way to model systems with several time references [57].

ER nets have been used as the kernel formalism for an environment for specification and verifi-
cation of concurrent time dependent systems [39, 41]. In addition, ER nets have been used in the
modeling of hardware systems [44, 46], and a stochastic extension of ER nets has been used to model
software processes [48].

A timed extension of UML has been defined to adequately capture timing aspects in UML [66, 70].
Time-related features are introduced in a rigorous way in UML’s Statecharts and OCL.

References [2, 3, 39, 40, 41, 44, 46, 48, 57, 66, 70, 119]

4.3 Software Verification

4.3.1 Operational Models

ER Nets were taken as the reference operational model for carrying out symbolic execution of
specifications and implementations of concurrent systems. An algorithm was first proposed for
a class of ER Nets that can model concurrent and discrete-time systems. Then, a more specific
algorithm was proposed for a subclass of ER Nets, which can be used to model most systems of
interest. This algorithm uses a significantly lower amount of information than the first one [1, 42].
The research has also focused on the definition of a set of test case selection criteria, based on the
topological coverage of the underlying net [43]. In addition, the timing properties of TB Nets were
studied. TB Nets are a subclass of ER Nets in which only temporal information is modeled and
used. This line of research led to the definition of methods for evaluating the reachability of specific
states within a specified time interval [4].

References [1, 4, 42, 43]

4.3.2 Logic-based Models

Sandro Morasca has carried out research on the generation of functional test cases for real-time
systems specified via logic languages. Based on the temporal logic language TRIO, an algorithm
for the (semi)automatic derivation of test cases was devised [47]. To curb the intrinsic complexity
of the problem, a number of coverage criteria were defined, as is usually done in structural software
testing [5]. This also led to the design and prototypal implementation of a test case generation tool.

Paper [51] shows the proposal of several criteria and techniques for the generation of test cases
“in the large” for real-time systems specified with TRIO+, which is an object-oriented extension of
TRIO. In addition, a technique was proposed [16] for generating functional test cases for modular,
hierarchical, real-time software systems. This technique can be applied to a large class of specification
languages. The use of this technique was also practically supported with the implementation of an
automated tool [17, 58].

References [5, 16, 17, 47, 51, 58]

4.3.3 Mutation Analysis

Mutation analysis, which is usually applied to sequential programs, was extended to concurrent
programming. Ada was taken as the reference language and a number of specific mutant operators
were defined for the language’s concurrent constructs. The application of the technique defined in
[52] allows the evaluation of how thoroughly a test set exercise the concurrent features of an Ada
program.

References [52]
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4.3.4 Stopping Rules for Testing

One of the most important problems in software verification lies in finding stopping rules for testing.
The literature contains several proposals that are usually based on criteria that look objective. How-
ever, these proposals may not be adequate, especially for systems with high reliability requirements.
An approach based on Bayesian statistics was introduced, based on the idea that testing actually
stops when testers have reached a sufficient degree of confidence in the correctness of a program.
The use of these techniques in this context was first subject to a systematic theoretical analysis.
Then, a model was proposed to describe how this degree of confidence varies during the test process.
An experiment provided evidence that supported the initial hypotheses [67].

An approach was proposed for assessing the mean failure frequency of a program, based on
the statistical test of hypotheses [79]. The approach can be used to establish stopping rules and
evaluate the quality of a program based on its mean failure frequency during the late testing phases.
The proposal shows how to set and satisfy conservative bounds for the minimum number of test
executions that are needed to achieve a target mean failure frequency with a specified level of
statistical significance, based on the quality goal of testing and the specific test execution profile
chosen. The approach also relaxes a few assumptions of the literature, so it can be used in a larger
set of real-life cases.

References [67, 79]

4.3.5 Analytical Studies

The assessment of different testing can be carried out by evaluating their effectiveness in causing 1) a
high number of software failures, or 2) at least one failure. The theoretical study of [71] first identifies
the least restrictive constraints for rationally allocating test data across the input subdomains of
a software program. Specifically, a theorem (a necessary and sufficient condition) was first proven
that allows the comparison of the effectiveness of different testing techniques based on the expected
number of failures they cause. This theorem is based on the only knowledge of the ordering of the
failure rates of the subdomains. So, the knowledge of the exact values of the failure rates is not
required. The theorem was also extended to the case in which a partial ordering of the subdomain
failure rates is known. Also, along the same line of reasoning, a similar theorem was proven to
compare different testing techniques in terms of the probabilities of causing at least one failure.

References [71]

4.3.6 Model-driven Verification of Software for Web Systems

The generation of test data for a Web application generator has been investigated. Specifically,
the test data are defined as Web application models coded in WebML. Different application models
exercise different productions of the WebML grammar, so coverage measures have been defined for
these productions. A preliminary empirical analysis carried out in an industrial environment has
allowed the study of how well the test data exercise the entire grammar, so as to devise possible
improvements in the quality of the test set by adding more test data [73].

References [73]

4.4 Analysis of On-line Social Networks

The unauthorized propagation of information is an important problem in the Internet, especially
because of the increasing popularity of On-line Social Networks. To address this issue, many access
control mechanisms have been proposed so far, but there is still a lack of techniques to evaluate the
risk of unauthorized flow of information within social networks. We have introduced a probability-
based approach to modeling the likelihood that information propagates from one social network user
to users who are not authorized to access it. The approach is demonstrated via an example, to show
how it can be applied in practical cases [102].

References [102]
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4.5 Semantic Web Services

Semantic web services are gaining more attention as an important element of the emerging semantic
web. Therefore, testing semantic web services is becoming a key concern as an essential quality
assurance measure. The objective of the systematic literature review carried out [28] is to summarize
the current state of the art of functional testing of semantic web services by providing answers to
a set of research questions. The review follows a predefined procedure that involves automatically
searching 5 well-known digital libraries. After applying the selection criteria to the results, a total
of 34 studies were identified as relevant. Required information was extracted from the studies and
summarized. Our systematic literature review identified some approaches available for deriving test
cases from the specifications of semantic web services. However, many of the approaches are either
not validated or the validation done lacks credibility. We believe that a substantial amount of work
remains to be done to improve the current state of research in the area of testing semantic web
services.

References [28]

5 Fellowships

Sandro Morasca earned the following fellowships.

• One fellowship on “Testing funzionale di sistemi software” from Selenia S. p. A., in 1987, 1988
e 1989.

• One eighteen month fellowship of the European Consortium ERCIM for research to be carried
out at European universities and scientific institutions.

• Two twelve month fellowships of CNR (the Italian National Research Council) for research to
be carried out at Italian universities and scientific institutions.

• Two twelve month fellowships of CNR (the Italian National Research Council) for research to
be carried out at foreign universities and scientific institutions.

6 Prizes

Sandro Morasca has received the following prizes:

• Prize “Francesco Somaini” (1979) as best student in his high school to enroll in a scientific
university

• “Electrical Engineering Student Award” (1988) from the IEEE North Italy section.

• “Seymour Cray” 1991.

• Final prize for a fellowship from CNR (the Italian National Research Council) for research to
be carried out at foreign universities and scientific institutions.

7 Projects

Sandro Morasca’s research activities have been partially carried out in the following projects.

National projects List:

• Progetto MPI 40% “Reti di Petri: modelli, applicazioni, strumenti”

• Progetto MPI 60% “Strumenti per la specifica e la verifica di sistemi software in tempo
reale”
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• Progetto CINI “PROTAGORA”

• Progetto cofinanziato MURST “MOSAICO”

• Progetto cofinanziato MIUR “QUACK”

International projects List:

• EU-ESPRIT project “IPTES”

• EU-ESSI project “CEMP”

• EU-ESSI project “PROMOTE”

• EU-IST Project “ESERNET” (Thematic Network)

• EU-IST Project “QualiPSo” (Integrated Project)

8 Talks

Tutorials Sandro Morasca’s activity includes the following tutorials:

• “Formal Methods in Software Measurement and Software Measurement in Formal Meth-
ods,” presented at the international conferences METRICS 2003 and Formal Methods
Europe 2003

• “An Introduction to Web Quality,” presented (with Luciano Baresi) at the international
conference ICWE (International Conference on Web Engineering) 2004

• “Fundamental Aspects of Empirical Software Engineering,” presented at ESELAW 2007

• “Empirical Software Engineering,” presented at the 6th International Summer School on
Software Engineering, Salerno, Italy, September 16 - 18, 2009

• “QualiPSo Overview,” presented (with Etiel Petrinja) at OSS2010, South Bend, IN, USA,
June 2, 2010

Keynotes Sandro Morasca has been invited to deliver a keynote speech at the following interna-
tional conferences

• OSS 2007

• ESELAW 2007

• SAST 2008

• MetriSec 2009

• OSS 2013

Invited Talks He has been invited to deliver talks at several institutions, including

• University of Stuttgart, Germany

• Universidad de Castilla-La Mancha at Ciudad Real, Spain

• Norwegian University of Science and Technology in Trondheim, Norway

• Free University of Bolzano-Bozen, Italy

• Universidad Politécnica de Valencia, Spain

• Fraunhofer Center Maryland at College Park, USA

• North Carolina State University at Raleigh, USA
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9 Reviewing Activities

9.1 International Journals

Editorial Board Member of the Editorial Board of “Empirical Software Engineering: An Interna-
tional Journal,” published by Springer-Verlag (5-year impact factor for 2011: 2.039)

Reviewer Reviewer of articles for international journals including: IEEE Transactions on Software
Engineering, ACM Transactions on Software Engineering Methodology, ACM Computing Sur-
veys, IEEE Transactions on Reliability, IEEE Transactions on Services Computing, Informa-
tion and Software Technology, ACM Computing Surveys, Advances in Engineering Software,
Advances in Software Engineering, Fundamenta Informaticae, IEE Proceedings, International
Journal of Open Source Software and Processes, International Journal of Software Engineering
and Knowledge Engineering, Information Sciences, Journal of Systems Architecture, Journal of
Software Maintenance and Evolution: Research and Practice, Journal of Systems and Software,
Software and System Modeling.

Guest Editor He was guest editor of a Special Issue on Knowledge Discovery from Software Engi-
neering Data of the International Journal of Software Engineering and Knowledge Engineering
[15].

9.2 International Conferences

9.2.1 Chair and Co-chair

Sandro Morasca has served as Chair or Co-chair for the following conferences.

• Program Chair of a workshop on measuring Object-Oriented Software at ECOOP’98.

• Program co-Chair of the “First International Workshop on Web Quality” held jointly with
ICWE (International Conference on Web Engineering) 2004.

• Program co-Chair of a workshop on “Measurement and Metrics” held jointly with WWW
2005.

• Program co-Chair of the “1st International Workshop on Trust in Open Source Software”
(TOSS) held jointly with OSS (Open Source Software) 2007 [82].

• Program co-Chair of ICSEA 2007.

• Chair of the “Second International Doctoral Symposium on Empirical Software Engineering”
held as a part of the International Empirical Software Engineering Week 2007.

• Program co-Chair of the “3rd International Workshop on Designing Empirical Studies: As-
sessing the Effectiveness of Agile Methods” (IWDES 2009) held jointly with XP (Extreme
Programming) 2009 [88]

• Program co-Chair of the Short papers & posters track of PROFES 2012

• Program co-Chair of IWSM-MENSURA 2012

9.2.2 Steering Committees

He has served in the Steering Committees of the following international conferences:

• METRICS

• ESEM
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9.2.3 Program Committees

Sandro Morasca has served on the PC of a number of international software engineering conferences,
including

• EUROMICRO

• Workshop on Industrial-strength Formal Methods (WIFT)

• “International Conference on Software Engineering and Software Engineering” (SEKE)

• “International Conference on Software Maintenance” (ICSM)

• “International Symposium on Software Metrics” (METRICS)

• “European Conference on Software Quality” (ECSQ)

• “International Conference on Web Engineering” (ICWE)

• “International Symposium on Software Reliability Engineering” (ISSRE)

• “International Symposium on Empirical Software Engineering” (ISESE)

• “Fundamental Approaches in Software Engineering” (FASE)

• “International Conference on Software Engineering Advances” (ICSEA)

• “Automated Software Engineering” (ASE)

• “Brazilian Symposium on Software Engineering” (CBSOFT-SBES)

• “International Conference on Software and Data Technologies” (ICSOFT)

• “International Symposium on Empirical Software Engineering and Measurement” (ESEM)

• “International Conference on Resource Intensive Applications and Services” (INTENSIVE)

• “Italian Workshop on Eclipse Technologies” (Eclipse-IT)

• “Web Quality and Testing Workshop” at ICWE

• “International Workshop on Security Measurements and Metrics” (MetriSec)

• “Conference on Open Source Software” (OSS)

• “Predictive Models in Software Engineering” (PROMISE)

• “Quantitative Approaches on Object-Oriented Software Engineering and Related Paradigms”
(QAOOSE)

• “International Conference on the Quality of Information and Communications Technology”
(QUATIC), track on Quality in Web Engineering

• “International Working Conference on Source Code Analysis and Manipulation” (SCAM)

• “Software Measurement European Forum” (SMEF)

• “Workshop on Emerging Trends in Software Engineering” (WETSoM)

• “Workshop on Public Data about Software Development” (WoPDaSD)

• “International Conference On Signal-Image Technology and InternetBased Systems” (SITIS),
track on Open Source Software Development and Solutions (OSSDS)

• “Latin American Web Congress” (LA-WEB)
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• “Estimation and Prediction in Software & Systems Engineering” (EsPreSSE)

• “International Conference on Quality Software” (QSIC)

• “Value Creation Process in Agile Projects” (VALOIR)

• “New Ideas and Emergent Results” (NIER)

• “PROFES 2011- Doctoral Symposium”(PROFES)

• “Evaluation & Assessment in Software Engineering”(EASE)

In addition, he has been a reviewer of articles for other international conferences, including ICSE
and ESEC.

9.2.4 Conference Organization

Sandro Morasca has participated in the organization of the following conferences as

• Finance Chair of the IEEE and ACM “Sixth International Workshop on Software Specification
and Design”

• Organizing Committee Member of Congresso AICA 2001

• General Chair of METRICS 2005.

10 Public Administration Committees

Ministry Level Sandro Morasca was a member of the Committee on Open Source Software of the
Italian “Ministero per le Riforme e le Innovazioni nella Pubblica Amministrazione.”

Local Level Sandro Morasca served on a Committee on software strategies of the Provincia di
Como.
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gegneria del software - Progettazione, sviluppo e verifica (in Italian). Mondadori Informatica,
1991.

[33] Augusto Celentano, Pierluigi Della Vigna, Piero Fraternali, and Sandro Morasca. Fondamenti
di Informatica - Dal problema al programma (in Italian). ETAS Libri, 1999.

11.3 Refereed Book Chapters

[34] Sandro Morasca. Software measurement. In Handbook of Software Engineering and Knowledge
Engineering - Volume 1: Fundamentals (S.K. Chang ed.), pages 239–276. World Scientific,
2001.

[35] Jeffrey Carver, Maria Letizia Jaccheri, Sandro Morasca, and Forrest Shull. Using empirical
studies during software courses. In Empirical Methods and Studies in Software Engineering,
Experiences from ESERNET, volume 2765 of Lecture Notes in Computer Science, pages 81–103,
Berlin, Heidelberg, 2003. Springer-Verlag.

19



[36] Luciano Baresi, Sebastiano Colazzo, Luca Mainetti, and Sandro Morasca. W2000: A modeling
notation for complex Web applications. In Web Engineering (Emilia Mendes and Nile Mosley
eds.), pages 335–364, Berlin, Heidelberg, 2006. Springer-Verlag.

[37] Sandro Morasca. Fundamental aspects of software measurement. In International Summer
School on Software Engineering–Tutorial Lectures, volume 7171 of Lecture Notes in Computer
Science, pages 1–45, Berlin, Heidelberg, 2013. Springer-Verlag.

11.4 Conference Proceedings

[38] Roberto Lecciso, Stefano Mainetti, and Sandro Morasca. Software metrics: a critical evalu-
ation and an application to Pascal. Microprocessing and Microprogramming. Proceedings of
EUROMICRO ’86, Venice, Italy, September 16-18, 18(1-5):605–616, 1986.
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