Le professioni biotecnologiche del futuro che plasmeranno la nostra vita

Gianluca Molla Università degli Studi dell'Insubria

Master programme in Biotechnology for the Bio-based and Health Industry

Outline della presentazione

Che cosa sono le Biotecnologie

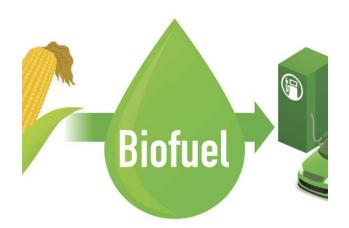
Quali sono le tendenze nelle Biotecnologie

Quali sono le figure professionali che saranno richieste

Quali skills dovranno avere i future professionisti

Come possono essere raggiunte queste competenze

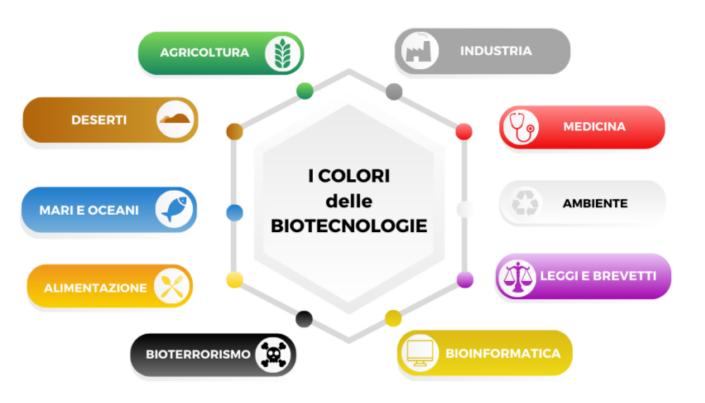
Che cosa sono le Biotecnologie?


Le biotecnologie utilizzano i processi biologici per lo sviluppo e la produzione di nuovi **prodotti** (biobeni), **processi** o **servizi**.

INSULINA (PROTEINA)
PRODOTTA
UTILIZZANDO
MICROORGANISMI

BIOCARBURANTI
PRODOTTI DA SCARTI
BIOLOGICI
UTILIZZANDO
BATTERI/LIEVITI

TEST/TAMPONI/SAGGI



Le Biotecnologie hanno diversi colori

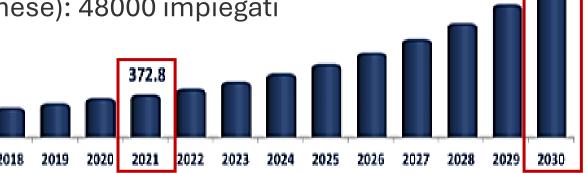
Le green biotechnology \rightarrow operano nel campo dell'agricoltura La creazione di nuove varietà di piante di interesse agricolo, la sintesi di biofertilizzanti e di biopesticidi e la produzione di organismi geneticamente modificati (OGM)

Le white biotechnology \rightarrow applicazioni in processi industriali (progettazione di processi e prodotti ad un costo minore rispetto ai tradizionali).

Le **red biotechnology** \rightarrow processi biomedici e farmaceutici (vaccini, antibiotici, terapia genica)

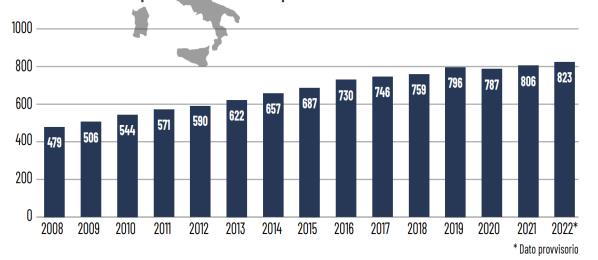
Le Biotecnologie sono un settore in attiva crescita

L'industria biotec è uno dei maggiori driver economici

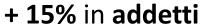

Valore complessivo delle aziende biotec: ~ 2000 miliardi di dollari (2021)

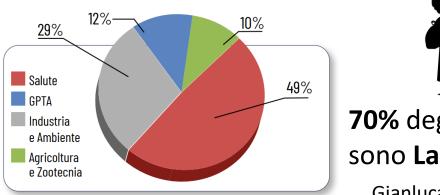
Addetti: In US \rightarrow 1.6 milioni di impiegati

Novo Nordisk (multinazionale danese): 48000 impiegati



1,345.0




ITALIA

L'evoluzione del comparto: il numero di imprese biotech in Italia...

+ 17% in Investimenti in ricerca e sviluppo

70% degli addetti sono **Laureati**

Gianluca Molla

Master programme in Biotechnology for the Bio-based and Health Industry

TRENDS NELLE BIOTECNOLOGIE ROSSE

I primi 3 farmaci venduti al mondo sono FARMACI BIOTECNOLOGICI (BIOFARMACI)

FARMACO	2022 VENDITE	TYPE
1. Comirnaty COVID-19 vaccine	\$55,918,791,640	Vaccino
2. Humira (adalimumab)	\$21,237,000,000	Anticorpo
3. Keytruda (pembrolizumab)	\$20,937,000,000	Anticorpo
4. Paxlovid	\$18,933,000,000	Composto
5. Spikevax COVID-19 vaccine	\$18,435,000,000	Vaccino
6. Eliquis (apixaban)	\$18,269,000,000	Composto
7. Eylea (aflibercept)	\$12,721,221,200	Anticorpo
8. Biktarvy	\$10,390,000,000	Composto
9. Revlimid (lenalidomide)	\$9,978,000,000	Composto
10. Stelara (ustekinumab)	\$9,723,000,000	Anticorpo

TRENDS NELLE BIOTECNOLOGIE ROSSE

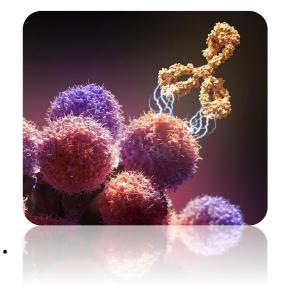
I primi 3 farmaci venduti al mondo sono FARMACI BIOTECNOLOGICI (BIOFARMACI)

FARMACO	2022 VENDITE	TYPE
1. Comirnaty COVID-19 vaccine	\$55,918,791,640	Vaccino
2. Humira (adalimumab)	\$21,237,000,000	Anticorpo
3. Keytruda (pembrolizumab)	\$20,937,000,000	Anticorpo

progettati per ripristinare, potenziare una risposta del sistema immunitario, in particolare nelle cellule tumorali.

Funzioni: identificazione delle cellule cancerose.

Delivery di farmaci o ormoni



nuovi vaccini più efficaci e disponibili più rapidamente

(emergenza covid – tubercolosi).

Vaccini tradizionali: virus attenuati

Vaccini innovativi: vaccini a RNA/DNA/proteine ricombinanti

TRENDS NELLE BIOTECNOLOGIE ROSSE

Terapie Cellulari e Geniche (oncologia, medicina rigenerativa, malattie rare)

2017: La FDA ha approvato le prime terapie geniche → Kymriah e Yescarta
I farmaci usano i globuli bianchi del paziente per trattare la leucemia linfatica acuta e linfoma.
Dal 2018 questo campo della biotecnologia è raddoppiato.

Medicina Personalizzata (Malattie Rare e Cancro)

Grazie alla riduzione dei costi del sequenziamento genetico (~300 dollari)


Consente screening dei pazienti e sviluppo di piani di **terapie personalizzate**, più efficaci rispetto a terapie meno specifiche perché personalizzate sul patrimonio genetico del paziente.

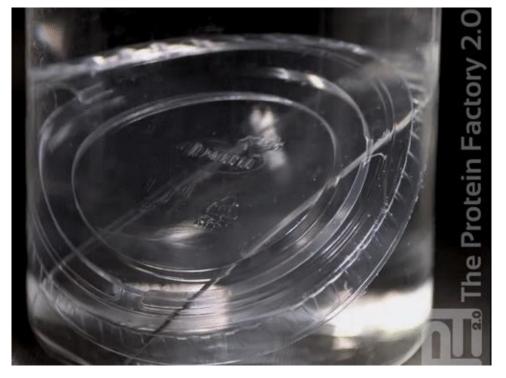
Terapie con cellule **CAR T-cell** utilizzate per il trattamento della leucemia, il sistema immunitario "attaccherà i tumori".

TRENDS NELLE BIOTECNOLOGIE BIANCHE

Riciclo e valorizzazione degli scarti industriali e dei rifiuti

Vaniglia da plastica

Biomateriali da rifiuti



Biodegradazione e riciclo del PET con enzimi

The Protein Factory 2.0

TRENDS NELLE BIOTECNOLOGIE VERDI

La popolazione globale aumentarà di oltre il 25 % nei prossimi 30 anni (9.7 miliardi) (fonte: Nazioni Unite).

Necessità di più cibo per le persone e per il bestiame Uso del suolo in competizione con le aree urbane.

Impatto delle Biotecnologie: miglioramento delle rese agricole

Modifica genetica per produrre varietà di grano o mais capaci di: crescere in condizioni più difficili produrre di più in una superficie più piccola

Sviluppo di **pesticidi biologici** (biomolecule/microorganismi) cosente di proteggere le colture senza l'uso di sostanze chimiche nocive o danni ambientali.

Figure professionali nella fase di sviluppo e ricerca

Esperti in ingegneria genetica/Biologia molecolare/Biochimici cellulari Biotecnologi molecolari (Biochimici, Genetisti, Biologi Molecolari)

Cli specialisti che studiano
l'interazione tra farmaci e bersagli molecolari;
gli effetti dei farmaci, degli ormoni e dei nutrienti sul corpo
umano, sullo sviluppo e sulla crescita delle cellule;
Il patrimonio genetico per progettare farmaci/terapie migliori.

I biotecnologi lavorano in team multidisciplinary (ad esempio con medici, ingegneri, esperti di technology transfer)

Figure professionali nella fase di produzione

Biotecnologi industriali per la produzione e purificazione di proteine/microorganismi/cellule (ad es., anticorpi monoclonali)

Responsabili che i prodotti soddisfino i requisiti di purezza, sicurezza, potenza e qualità.

Process Development Scientist

Supervisione dei processi di produzione, miglioramento qualità e efficienza del prodotto. Sviluppo di metodi per scalare la produzione di farmaci senza compromettere gli standard di qualità e sicurezza.

Bioprocess engineers

Supervisione dei processi di produzione dei prodotti (ad es., biocarburanti, farmaci). Integrazione di processi biotecnologici con quelli chimici esistenti.

Gestione team di ricerca e produzione.

Figure professionali in ambito computazionale

Nuove tecnologie informatiche avanzate consentono alle aziende di espandere la scala della loro ricerca e di migliorare l'efficienza nel processo di produzione.

Machine learning e intelligenza artificiale → analizzare grandi set di dati aiuta i produttori di farmaci ad identificare i trattamenti più efficaci.

Cloud computing (eseguire applicazioni tramite il cloud).

Elimina una barriera per molte innovazioni nel settore biotech.

Consente alle aziende di archiviare e analizzare dati senza dover acquistare attrezzature costose.

→ riduce il tempo necessario per portare nuovi prodotti biotech sul mercato.

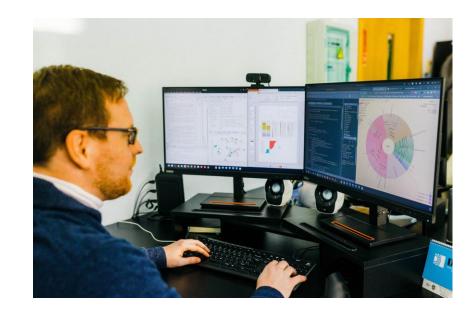
Lo sviluppo di un nuovo farmaco richiede:

>10 anni - ~1.3 miliardi di dollari - Tasso di fallimento: 90%

Bioinformatico

Responsabili dell'integrazione di processi computazionali nella progettazione, produzione e controllo di biobeni.

Sviluppano **processi per analizzare dati** relativi agli organismi viventi.


Identificano tendenze nei dati da documenti e dati archiviati.

Utilizzano la modellizzazione statistica per ottimizzare gli approcci biotecnologici.

Fanno previsioni sulle tendenze mediche, ambientali e biologiche basate sulla loro analisi.

Capacità di analizzare di dati e effettuare simulazioni al computer **utilizzando programmi basati su modelli di machine learning** più avanzati.

Professioni per biotecnologi non al bancone

Regulatory Affairs specialist

Garantiscono la conformità con gli enti regolatori e la **preparazione della** documentazione necessaria per le approvazioni dei prodotti. interagiscono con le autorità regolatorie e si mantengono aggiornati sulle normative.

Associato alla Ricerca Clinica

Monitorano e gestiscono l'andamento degli studi clinici per garantire che tutti i partecipanti rispettino i protocolli di sicurezza e i requisiti regolatori. Collaborano strettamente con gli investigatori per raccogliere dati ed assicurare che lo studio sia condotto in modo sicuro ed etico.

Business Development Manager

Promuovono partnership, individuano nuove opportunità di mercato.

Analizzano e valutano le tendenze e opportunità di investimento e sviluppano strategie per la crescita aziendale.

Medical scientific liaison

Forniscono competenze scientifiche e cliniche ai professionisti sanitari. Educano i fornitori sanitari sull'uso corretto dei prodotti, comunicano risultati e raccolgono feedback.

Gianluca Molla

Professioni per biotecnologi non al bancone

Project manager

Sono **responsabili della gestione dei progetti di un'azienda** e si assicurano che ciascun progetto sia completato in tempo, nel rispetto delle linee guida di sicurezza e regolamentari.

Gianluca Molla

Specialista dell'Assicurazione della Qualità

Si assicurano che **i prodotti e i processi rispettino standard di qualità** dell'azienda e degli enti regolatori. Implementano procedure di Controllo e monitorano la conformità alle linee guida regolatorie.

Product manager

Sono responsabili dello **sviluppo di prodotti** specifici dall'ideazione alla distribuzione. Effettuano ricerche di mercato per conoscere le esigenze dei consumatori.

I business development manager

Coordinano gli sforzi di espansione, pianificano per prevenire rischi del settore e supportano le relazioni con i clienti in corso. Incontrano nuovi investitori per trovare nuove opportunità di crescita.

Analisti del DNA

Analizzano campioni di DNA per raccogliere informazioni genetiche. Determinano relazioni familiari, storia medica. Gli analisti del DNA possono collaborare con le forze dell'ordine.

Quali competenze sono richieste?

Sviluppare un equilibrio tra competenze scientifiche e trasversali è essenziale per avere successo nell'industria biotecnologica, poiché è un settore che richiede sia competenze tecniche sia una comunicazione efficace e la capacità di collaborare con i colleghi.

Competenze tecnico/scientifiche:

- Biologia molecolare
- Analisi chimica
- Metodologia di ricerca
- Sviluppo di farmaci
- Ricerca clinica
- Ricerca di laboratorio
- Genetica
- Gestione dei dati e analisi
- Normativa e conformità

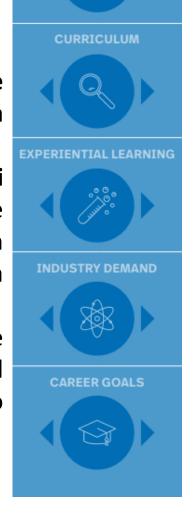
Competenze trasversali:

- Comunicazione
- Ricerca
- Organizzazione
- Attenzione ai dettagli
- Risoluzione dei problemi
- Gestione del tempo
- Team working
- Gestione di progetti e budget

Come ottenere le competenze richieste?

Laurea
Magistrale
2 anni

Dottorato3 anni


Master (2 anni)
Simile al Dottorato ma meno applicativo

Consente di conseguire conoscenze differenti/aggiuntive rispetto a quelle di un Corso di Laurea

Fornisce una visione complessiva

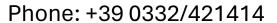
Opportunità di apprendimento anche pratico in collaborazione con l'industria

Prepara ad entrare nell'industria/servizi o al dottorato

PROGRAM LENGTH

Fornisce una visione specializzata del campo

Progetto di ricerca con il corpo docente del programma


Si acquisisce esperienza con il **lavoro sul campo.**Prepara a continuare nella ricerca in accademia o in azienda

Gianluca Molla

Full professor of Biochemistry Coordinator of the Master programme in Biotechnology for the Bio-based and Health Industry

Email: gianluca.molla@uninsubria.it

Dept. of Biotechnology and Life Sciences University of Insubria Via Dunant, 3 | 21100 Varese (Va) - Italy

IN BIOTECNOLOGIE
BBHI
(INSUBRIA-VARESE)

www.uninsubria.it/formazione/offerta-formativa/corsi-di-laurea/biotechnology-bio-based-and-health-industry

