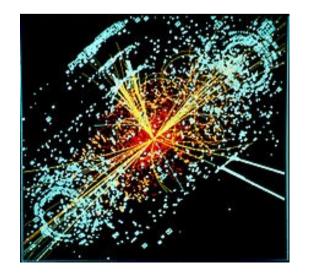


OPEN DAY 2021

Master's Degree in Physics

Master's Degree

WHY PHYSICS?


The Master's Degree Programme in Physics (LM-17 Class)

affords students the opportunity to acquire advanced competences in modern physics, in both fundamental and applied fields.

SUBJECTS

The Master's Course in Physics aims at completing the elements acquired during the Bachelor's course in the various areas and to bring students into contact with the different research fields.

A Master's Degree in Physics can lead to employment in research laboratories at research centres or in high-tech companies, to entrance into finance or insurance companies, or to a career as a teacher in high school.

Career opportunities

• Research activity in the R&D sectors of high-tech companies (such as those in the fields of electronics, telecommunication, medical instrumentation and optics)

 Research activity for the development of statistical models and for big-data analysis in banks, finance or insurance companies

• Teaching activity in high schools (which requires undergoing a selection procedure laid out by the Ministry of Education)

 Continuation of the studies with a PhD or a Specialization School, such as that in Medical Physics.

Master's Degree

In general, a Master's Degree is influenced by the specific research activities present in the University

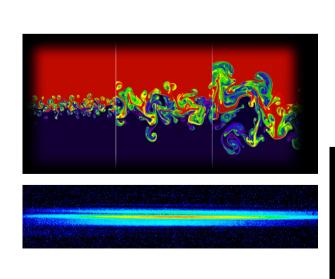
- Open to all students with a Bachelor's Degree in Physics (L-30 Class)
- Knowledge of English at the B2 level
- All the Master's Degree courses are held in English
- Erasmus Program
- Double Degree Program: Agreement with Linnaeus University (Kalmar, Sweden)

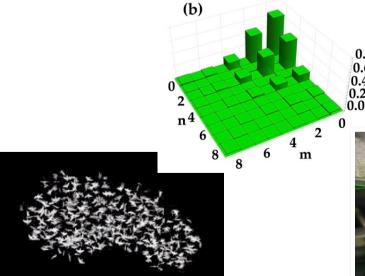
Double degree

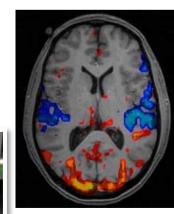
- Students must spend a semester at Linnaeus University (Kalmar, Sweden)
- 30 credits
- Master's thesis discussion in the presence of faculty members from Linnaeus University
- Erasmus funding + additional University funding

And in Como...

There is student accommodation at "La Presentazione" within walking distance from via Valleggio 11, where the Physics courses are held.




To obtain a Master's Degree in Physics, students must acquire 120 credits over two years, choosing from among


3 available curricula:

- General Physics
- Data Science for Astrophysics
- Medical and Experimental Physics

To obtain a Master's Degree in Physics, students must acquire 120 credits over two years as follows:

- 42 credits in the following areas:
 - Experimental and Applied Physics
 - Theoretical and Fundamental Physics
 - Microphysics
 - Astrophysics
- 12 credits among affine and integrative activities
- 12 credits chosen freely
- 6 credits performing a supervised Traineeship
- 48 credits based on the Final Thesis

• 42 credits in the following areas:

1) Experimental and Applied Physics

- Scripting and programming laboratory for data analysis
- Optics with laboratory
- Non-linear optics
- Environmental physics
- Basis of medical physics
- Physical basis of diagnostic imaging
- *Elements of dosimetry*
- Physical basis of radiotherapy
- Medical physics laboratory
- Advanced experimental and data analysis techniques in particle and nuclear physics
- 2) Theoretical and Fundamental Physics
- 3) Microphysics
- 4) Astrophysics

- 42 credits in the following areas:
 - 1) Experimental and Applied Physics
 - 2) Theoretical and Fundamental Physics
 - Quantum physics III
 - Quantum information theory
 - Statistical physics I
 - Statistical physics II
 - Theoretical physics
 - Geometrical methods in physics
 - General relativity
 - Physics of dynamical systems
 - Physics of complex systems
 - 3) Microphysics
 - 4) Astrophysics

- 42 credits in the following areas:
 - 1) Experimental and Applied Physics
 - 2) Theoretical and Fundamental Physics
 - 3) Microphysics
 - Radiation and detectors
 - Laser physics
 - Metamaterials
 - Quantum and semiclassical optics
 - Elementary particle phenomenology
 - Solid state physics
 - Many-body physics
 - Collective properties of condensed matter systems
 - 4) Astrophysics

- 42 credits in the following areas:
 - 1) Experimental and Applied Physics
 - 2) Theoretical and Fundamental Physics
 - 3) Microphysics
 - 4) Astrophysics
 - Elements of astrophysics and cosmology
 - Computational astrophysics
 - Time-domain astrophysics
 - Artificial intelligence for astrophysical problems

Two exams are to be chosen among the following affine and integrative activities

- Detection and characterization of optical states
- Optical signal analysis
- *Applied electronics*
- Aspects of chemical, biological, radiological and nuclear security
- Laboratory of biophysics and photopharmacology
- *Intelligent systems*
- Models for biological systems
- Analytical and probabilistic methods in mathematical physics (A)
- *Numerical solution of PDE (A)*
- Computational chemical physics
- Nanomaterials

PHYSICS

Two exams are to be chosen among the following affine and integrative activities

- Detection and characterization of optical states
- Optical signal analysis
- Applied electronics
- Aspects of chemical, biological, radiological and nuclear security
- Laboratory of biophysics and photopharmacology
- *Intelligent systems*
- Models for biological systems
- Analytical and probabilistic methods in mathematical physics (A)
- *Numerical solution of PDE (A)*
- Computational chemical physics
- Nanomaterials

Two exams are to be chosen among the following affine and integrative activities

- Detection and characterization of optical states
- Optical signal analysis
- *Applied electronics*
- INFORMATICS • Aspects of chemical, biological, radiological and nuclear security
- Laboratory of biophysics and photopharmacology
- Intelligent systems
- Models for biological systems
- Analytical and probabilistic methods in mathematical physics (A)
- *Numerical solution of PDE (A)*
- Computational chemical physics
- Nanomaterials

Two exams are to be chosen among the following affine and integrative activities

- Detection and characterization of optical states
- Optical signal analysis
- *Applied electronics*
- Aspects of chemical, biological, radiological and nuclear security
- Laboratory of biophysics and photopharmacology
- *Intelligent systems*
- Models for biological systems
- Analytical and probabilistic methods in mathematical physics (A)
- *Numerical solution of PDE (A)*
- Computational chemical physics
- Nanomaterials

Two exams are to be chosen among the following affine and integrative activities

- Detection and characterization of optical states
- Optical signal analysis
- *Applied electronics*
- Aspects of chemical, biological, radiological and nuclear security
- Laboratory of biophysics and photopharmacology
- *Intelligent systems*
- Models for biological systems
- Analytical and probabilistic methods in mathematical physics (A)
- *Numerical solution of PDE (A)*
- Computational chemical physics
- Nanomaterials

Traineeship

- The traineeship is compulsory
- It may be performed in the university laboratories, at research centres and in high-tech companies
- It should be different from the thesis work

Master's Degree Final Thesis

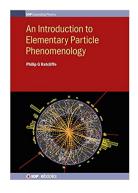
- The thesis is required to be **original work** in an area of theoretical, experimental or applied physics.
- The student is **followed by a supervisor** and should address a topic of real interest to the scientific community, **using advanced computation**, **experimental and/or theoretical techniques**.

Research areas

Elementary particle physics

experimental/theoretical

- Photodetectors and their applications
- Strong interaction physics



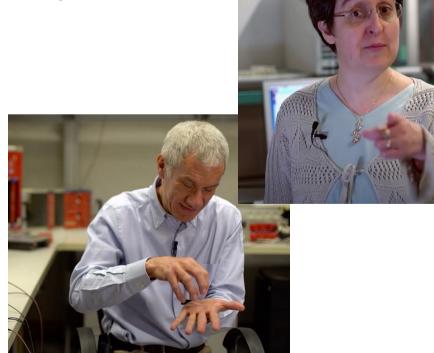
Research areas

Medical physics experimental

• Use of particle beams for diagnosis and therapy

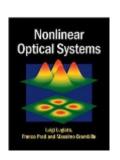
Development of innovative detectors for ionizing radiation

• Use of nanoparticles for drug delivery



Research areas Optics

experimental/theoretical

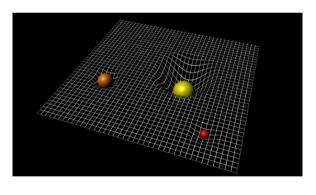


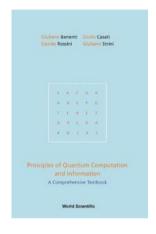
- Laser physics and spatio-temporal structures
- Ultrafast non-linear optics and micro-fabrication
- Light diffusion by nanoparticles
- Quantum optics and quantum information

Research areas

Gravitational physics

- The origin of dark energy
- Large scale structure of the Universe
- Curved-space quantization
- Analog gravity

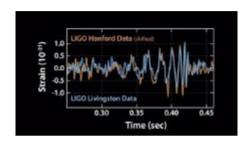


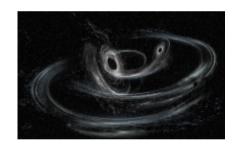


Research areas

Physics of matter experimental/theoretical

- Magnetism and superconductivity
- Quantum information
- Soft matter
- Quantum transport
- Statistical physics
- Non-linear dynamics and complex systems





Research areas Data Science for Astrophysics


In collaboration with INAF/OAB

- Extragalactic astrophysics
- Physical Cosmology
- Numerical astrophysics
- Time-variable phenomena
- Big Data in Astrophysics
- Exoplanets

Thank you for your attention!

For further information and questions please contact **Prof. Michela Prest - e-mail:michela.prest@uninsubria.it**